
2020
Extended Abstract

Computer Graphics 2015: Character Animation using Genetic Algorithms

Benjamin Kenwright

Terra State Community College, USA

The emergence of evolving search techniques (e.g., genetic algorithms)
has paved the way for innovative character animation solutions. For
instance, generating human movements `without' key-frame data.
Instead character animations are often created using biologically inspired
algorithms in conjunction with physics-based systems. While the event of
highly parallel processors, like the graphical processing unit (GPU), has
opened the door to performance accelerated techniques allowing us to
unravel complex physical simulations in reasonable time frames. The
combined acceleration techniques in conjunction with sophisticated
planning and control methodologies enable us to synthesize ever more
realistic characters that transcend pre-recorded ragdolls towards more
self-driven problem solving avatars. While traditional data-driven
applications of physics within interactive environments have largely been
confined to producing puppets and rocks, we explore a constrained
autonomous procedural approach. The core difficulty is that simulating
an animated character is straightforward, while controlling one is
difficult. Since the control problem isn't confined to human type models,
e.g., creatures with multiple legs, like dogs and spiders, ideally there
would be how of manufacturing motions for arbitrary physically
simulated agents. This presentation focuses on evolutionary algorithms
(i.e., genetic algorithms), compared to the normal data-driven approach.
We explain how generic evolutionary techniques are ready to emulate
physically-plausible and life-like animations for a good range of
articulated creatures in dynamic environments. We help explain the
computational bottlenecks of evolutionary algorithms and possible
solutions, such as, exploiting massively parallel computational
environments (i.e., graphical processing unit (GPU)).

The emergence of evolving search techniques (e.g., genetic algorithms)
has paved the way for innovative character animation solutions. For
instance, generating human movements without key-frame data. Instead
character animations are often created using biologically inspired
algorithms in conjunction with physics-based systems. While the event of
highly parallel processors, like the graphical processing unit (GPU), has
opened the door to performance accelerated techniques allowing us to
unravel complex physical simulations in reasonable time frames. The
combined acceleration techniques in conjunction with sophisticated
planning and control methodologies enable us to synthesize ever more
realistic characters that transcend pre-recorded ragdolls towards more
self-driven problem solving avatars. While traditional data-driven
applications of physics within interactive environments have largely been
confined to producing puppets and rocks, we explore a constrained
autonomous procedural approach. The core difficulty is that simulating
an animated character is straightforward, while controlling one is more
complex. Since the control problem isn't confined to human type models,
e.g., creatures with multiple legs, like dogs and spiders, ideally there
would be how of manufacturing motions for arbitrary physically
simulated agents. This paper focuses on evolutionary genetic algorithms,
compared to the normal data-driven approach. We demonstrate generic
evolutionary techniques that emulate physically-plausible and life-like
animations for a good range of articulated creatures in dynamic
environments. We help address the computational bottleneck of the
genetic algorithms by applying the tactic to a massively parallel
computational environment, such as, the graphical processing unit
(GPU). Realistic and interactive character animation is a crucial problem

in computer games and virtual environments. Within the past
decade, motion graph based methods are a standard approach to
the present problem. The efficiency of graph traversing is that the
primary bottleneck of this approach. More recently,
reinforcement learning techniques are employed to construct
character controllers. However, reinforcement learning cannot
handle environments that haven’t been experienced. Also,
reinforcement learning is bedeviled by the curse of
dimensionality. Hence, realtime online computing techniques are
urgent for a good range of applications.

Data-driven character animation has been extensively explored
within the past decade because it is efficient thanks to generate
new animations supported motion capture examples. Early works
proposed a replacement arrangement called motion graph to
arrange motion data. Plausible transition points are identified as
nodes and short motion clips are edges in motion graph. Top
quality animations are often synthesized by carrying on various
search methods on motion graph like branch-bound and
randomized search methods. However, these methods are too
slow for interactive avatar control as graph traversing is time
consuming. Within the following years, motion graph was
strengthened and augmented in several aspects. First, the
connectivity was strengthened by building fully connected
subgraphs between similar motion clips, by adding intermediate
poses interpolated from similar motion clips or by caching good
blending samples. Second, parameterization was applied to
similar motion clips. Third, interpolation was added to realize
precise control. Two main hurdles in interactive character
animation are the massive computation effort and therefore the
realtime restriction. Character animation requires an outsized
amount of computation to seek out a string of motion clips which
will be pieced together naturally. Meanwhile, applications like
video games are sensitive to computation time, so all
computation tasks must be finished in realtime. During this paper,
we employ parallel computing techniques to deal with these
hurdles. Each action sequence is evaluated by the sum of
discounted costs over a finite horizon. The genetic algorithm is
chosen to deal with our problem because we glance for fast
parallel evaluation methods and genetic algorithms are ideal for
parallelization. We implement our algorithm on CUDA which may
be a parallel computing architecture on GPU. Taking advantage of
the facility of recent GPU, top quality animations are often
generated in real-time. As no precomputing is required, our
algorithm is applicable to a good range of applications. Our
algorithm extracts similar motion clips automatically from the
input motion data. These similar motion clips are parameterized
in order that they are often represented by low dimensional
variables like turning angle and walking speed. Unlike the optimal
controllers that evaluate each action in an infinite horizon, our
controller selects each action supported its performance over a
finite horizon. Theoretical analysis and experiments show top
quality animations are often produced by short horizon planning.

This work is partly presented at 2nd International Conference and Expo on Computer Graphics & Animation on September 21-22, 2015 held at San Antonio, USA

