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ABSTRACT 

Angiotensin II receptor antagonists (ATIIRA) has become an 
attractive molecular target for drugs that aim to treat hypertension 
triggered by renin angiotensin system. To study the relationship 
between the structure of several ATIIRA we have performed a two 
dimensional and three-dimensional quantitative structure–activity 
relationship (QSAR) study of benzimidazole based derivatives. A 
series of 40 compounds containing 4, 5, 6, 7 substituted 
benzimidazoles were subjected to comprehensive 2D and 3D 
advanced kNN-MFA QSAR analysis employing multiple linear 
regression, partial least square, principle component analysis, 
advanced kNN molecular field analysis, stepwise forward back 
method, simulated annealing and genetic algorithm method. The 
model allowed the identification of relevant structural features 
required for the interaction with the AT1 receptor, enabling the 
prediction of activity of molecules. Some highly predictive 2D and 
3D-QSAR models, with significant models with r2 = 0.84 and r2 = 
0.83 were obtained in 2D analysis and with q2 = 0.77 and q2 = 0.67 
by advanced kNN MFA method in 3D analysis. These models are in 
good agreement with the structural characteristics of the potential 
angiotensin II receptor antagonists and provide some structural 
insights for the improvement of bioactivities. 

Keywords: Antihypertensive agents; Angiotensin II receptor 
antagonists; QSAR; knn-MFA; Substituted benzimidazoles. 

INTRODUCTION 

Hypertension is a major risk factor 
for cerebro-cardiovascular diseases; the 
renin-angiotensin-system (RAS) plays a 

pivotal role in many cardiovascular and 
renal diseases, including hypertension, heart 
failure, renal artery stenosis and diabetic & 
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nondiabetic nephropathies1. Angiotensin II 
is one of the most powerful endogenous 
vasoconstrictors produced by limited and 
very specific proteolysis of its precursor 
protein, angiotensin I in RAS. The effects of 
angiotensin II include constricting vascular 
smooth muscle cells directly and thereby 
producing hypertension when those cells are 
in small arterioles, angiotensin II increases 
myocardial contractility, stimulates 
aldosterone release by the adrenal gland 
(leading to salt and water retention and 
exacerbating hypertension), and stimulates 
catecholamine release from sympathetic 
nerve endings, which serves to raise blood 
pressure (BP) even further. Angiotensin II is 
also involved in cell growth and 
proliferation, with its greatest impact in 
human biology and disease in the heart, 
kidney, and cerebral vessels. The action of 
Ang II is mediated through selective 
membrane bound Angiotensin II receptors 
Type 1 (AT1) and Type 2 (AT2). These 
receptors have been identified and belong to 
the G- protein coupled receptor super family 
(GPCRs). The AT1 receptor exists in the 
blood vessels, liver, kidneys, adrenal cortex, 
and heart, and cardiovascular effects of AT 
II are mainly mediated by AT1 receptor2,3. 
The type 1 (AT1) receptor for the 
octapeptide hormone angiotensin II (Ang II) 
is a member of the G-protein-coupled 
receptor super family (GPCRs)4. In the last 
decades several selective antagonists have 
been designed developed and are used to 
treat both hypertension and damage 
associated with the diseases such as 
arthrosclerosis and diabetes5-15. Numerous 
data sets which are reported in the literature 
were subjected to QSAR analysis in order to 
design novel angiotensin II receptor 
antagonists16-28. In order to understand the 
design and key findings of experimental 
studies of Ries et. al. a 2D and 3D model for 
QSAR was generated by advanced methods 
employing Vlife MDS software package, 

version 3.029 to optimize biological activity 
and to design novel surrogates.  
 

EXPERIMENTAL PROTOCOL 
 
2D Model Builiding  

The physicochemical descriptors are 
based on the physicochemical properties of 
molecule. Another class of descriptors called 
the Alignment Independent (AI) descriptors 
around more than 700 descriptors AI 
descriptors are calculated30. For calculation of 
AI descriptors every atom in the molecule 
was assigned at least one and at most three 
attributes. The first attribute is ‘T-attribute’ to 
thoroughly characterize the topology of the 
molecule. The second is the atom type 
attribute. The atom symbol is used here. The 
third attribute is assigned to atoms taking part 
in a double or triple bond. After all atoms 
have been assigned their respective attributes, 
selective distance count statistics for all 
combinations of different attributes are 
computed. Three significant statistical 
methods were used while establishing a 2D 
QSAR relationship between the biological 
activity and physicochemical parameters 
namely multiple linear regression (MLR), 
partial least square analysis (PLS) and 
principle component analysis (PCA) methods 
are used to build a QSAR model. The QSAR 
model can then be used to predict activities 
for new molecules, for screening a large set of 
molecules whose activities are not known. 
 
Selection of dataset  

The in vitro AT1 activity values pIC50 
(nM) of 6- substituted benzimidazoles as 
shown in Table 1 was used as dependent 
variable and physicochemical and alignment 
independent descriptors in the 2D QSAR 
study while molecular fields as independent 
variables in the 3D QSAR study [8]. In 2D 
QSAR analysis three statistical methods 
(MLR, PLS, PCA) were applied on different 
combinations of test and training set to yield 
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six models (Model 1, 2, 3, 4, 5 and 6). The 
models 1, 2 and 3 were generated by sphere 
exclusion algorithm with a dissimilarity value 
of 2.2. The dataset was finally divided in a 
training set of 30 molecules and a test set of 
10 molecules. In Model 1, 2 and 3 the test set 
comprised of ten molecules BZ1, BZ2, BZ3, 
BZ4, BZ6, BZ8 BZ11, BZ13, BZ15 and 
BZ17; remaining molecules are kept in 
training set. The unicolumn statistics for the 
mentioned test set and training set is shown in 
Table 2. The other three models 4, 5 and 6 
were generated by manual method by 
dividing the test and training set on the basis 
of structural diversity. The test set consists of 
eight molecules BZ1, BZ2, BZ3, BZ8, BZ9, 
BZ19, BZ32, and BZ33 remaining molecules 
of the data set were kept in training set. The 
activity distribution plot for Model 4, 5, and 6 
is shown in Figure 1. The QSAR models with 
pertinent statistical parameters are shown in 
Table 3. 
 
Validation of 2D Models  

This is done to test the internal 
stability and predictive ability of the QSAR 
models. Developed QSAR models were 
validated by the following procedures: 
 
     Internal Validation 

The Internal validation was carried 
out using leave-one-out (LOO) method. For 
calculating q2, each molecule in the training 
set was eliminated once and the activity of the 
eliminated molecule was predicted by using 
the model developed by the remaining 
molecules. The q2 was calculated using the 
equation which describes the internal stability 
of a model:  

 
where yi, and yˆi are the actual and predicted 
activity of the ith molecule in the training set, 

respectively, and ymean is the average activity 
of all molecules in the training set. 

 
    External Validation  

For external validation, the activity of 
each molecule in the test set was predicted 
using the model developed by the training set. 
The pred_r2 value is calculated as follows:  

 
where yi, and yˆi are the actual and predicted 
activity of the ith molecule in the test set, 
respectively, and ymean is the average activity 
of all molecules in the training set. Both 
summations are over all molecules in the test 
set. Thus, the pred_r2 value is indicative of the 
predictive power of the current model for the 
external test set. Both summations are over all 
molecules in the test set. 
 
    Randomization Test 

To evaluate the statistical significance 
of the QSAR model for an actual dataset, one 
tail hypothesis testing was used. The 
robustness of the models for training sets was 
examined by comparing these models to those 
derived for random datasets. Random sets 
were generated by rearranging the activities 
of the molecules in the training set. The 
statistical model was derived using various 
randomly rearranged activities (random sets) 
with the selected descriptors and the 
corresponding q2 were calculated. The 
significance of the models hence obtained 
was derived based on a calculated Z score. Z 
score value is calculated by the following 
formula: 

 
where h is the q2 value calculated for the 
actual dataset, µ the average q2, and σ is its 
standard deviation calculated for various 
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iterations using models build by different 
random datasets. The probability (α) of 
significance of randomization test is derived 
by comparing Z score value with Z score 
critical value, if Z score value is less than 4.0, 
otherwise it is calculated by the formula as 
given in the literature. For example, a Z score 
value greater than 3.10 indicates that there is a 
probability (α) of less than 0.001 that the 
QSAR model constructed for the real dataset 
is random. 

 
     Evaluation of the QSAR Models 

The developed QSAR models were 
evaluated using the following statistical 
measures: number of observations 
(molecules); k, number of variables; optimum 
component, number of optimum PLS 
components in the model; r2, coefficient of 
determination; q2, cross-validated r2 (by leave 
one-out); pred_r2, r2 for external test set; Z 
score, Z score calculated by the 
randomization test; best_ran_q2, highest q2 
value in the randomization test; best_ran_r2, 
highest r2 value in the randomization test; a, 
statistical significance parameter obtained by 
the randomization test; SEE, standard error of 
estimate of the model; SECV,  standard error 
of cross-validation; and SEP, standard error of 
external test set prediction.  
 
3D Model Building  

k-nearest neighbor molecular field 
analysis (kNN-MFA) requires suitable 
alignment of given set of molecules 
calculation of descriptors. This is followed by 
generation of a common rectangular grid 
around the molecules where the steric and 
electrostatic interaction energies are 
computed at the lattice points of the grid 
using a methyl probe of charge +1 which act 
as 3D descriptors. These interaction energy 
values are considered for relationship 
generation and utilized as descriptors to 
decide nearness between molecules.  The 
descriptors that get selected in a given model 

are the field points either of steric or 
electrostatic nature at different locations in a 
common grid around set of molecules. The 
extreme of field values of compounds in the 
cluster of most active compounds decide 
range of field values which is recommended 
for new compound design. The kNN-MFA 
requires suitable alignment of set of 
molecules. This is followed by generation of a 
common rectangular grid around the 
molecules. The steric and electrostatic 
energies are computed at the lattice points of 
the grid using methyl probe of charge +1. 
These interaction energy values at the grid 
points are considered for relationship 
generation using kNN method and utilized as 
descriptors for obtaining distances within this 
method. An optimal training and test set can 
be generated for kNN method using sphere 
exclusion method. This algorithm allows 
constructing training sets covering all 
descriptor space areas occupied by 
representative points. It is expected that the 
predictive ability of QSAR models generally 
decreases when the dissimilarity level 
increases. Once the training and test sets are 
generated, kNN methodology is applied to 
descriptors generated over the grid. The 
methods adopted for 3D QSAR analysis are 
discussed below: 
 
a. kNN Stepwise forward backward 

molecular field analysis (SWFB)31 
The kNN technique is a conceptually 

simple approach to pattern recognition 
problems. In this method, an unknown pattern 
is classified according to the majority of the 
class memberships of its k nearest neighbors 
in the training set. The nearness is measured 
by an appropriate distance metric (e.g. a 
molecular similarity measure, calculated 
using field interactions of molecular 
structures). The standard kNN method is 
implemented simply as follows: (i) calculate 
distances between an unknown object (u) and 
all the objects in the training set; (ii) select k 



 Parate et al___________________________________________________________________ 

AJPCT1[2][2013]149-177  

objects from the training set most similar to 
object u, according to the calculated 
distances, (iii) classify object u with the group 
to which a majority of the k objects belong. 
An optimal k value is selected by the 
optimization through the classification of a 
test set of samples or by the leave-one out 
cross-validation. The variables and optimal k 
values are chosen using different variable 
selection methods as described below. 
 
b. Genetic algorithm (GA)32 

In biological systems, genetic 
information that determines the individuality 
of an organism is stored in chromosomes. 
Chromosomes are replicated and passed onto 
the next generation with selection criteria 
depending on fitness. Genetic information can 
however be altered through genetic operations 
such as mutation and crossover. In genetic 
algorithm, each “chromosome” is a set of 
genes, which constitutes a candidate solution 
to the discrimination problem. A population 
of “chromosomes” is used. The passage of 
each “chromosome” to the next generation is 
determined by its relative fitness, i.e., the 
closeness of its properties to those desired. 
Random combinations and/or changes of the 
transmitted “chromosomes” produce 
variations in the next generation of 
“offspring”. Better the fitness 
(correspondence with desired properties), 
greater is the chance of that chromosome 
being selected for transmission. Optimal or 
near optimal solutions are obtained through 
evolution over many generations. There are 
four major components of GA: chromosome 
generation, fitness assessment, selection, and 
mutation. This method employs a stochastic 
variable selection procedure, combined with 
kNN, to optimize 
(i)   The number of nearest neighbors (k) and  
(ii) The selection of variables from the 
original pool as described in simulated 
annealing.  

 

c. Simulated annealing (SA)33 
The idea of simulated annealing is to 

simulate a physical process called annealing 
in which a system is heated to a high 
temperature and then is gradually lowered to 
a preset temperature value (e.g. room 
temperature). During this process the system 
samples possible configurations according to 
Boltzmann distribution. At equilibrium low 
energy states will be mostly populated. The 
first implementation of the SA procedure was 
described by Metropolis et al., followed by 
the development of a more generalized 
mathematical optimization protocol. The 
implementation of SA is as follows: 
(i) Generate a trial solution to the underlying 
optimization problem; i.e. a kNN-MFA 
model is built based on a random selection of 
descriptors, a trial hypothetical 
pharmacophore (HP). 
(ii) Calculate the value of the fitness function, 
which characterizes the quality of the trial 
solution to the underlying problem i.e. the q2 

value for a QSAR model built using only the 
HP descriptors (q2curr). 
(iii) Perturb (i.e. slightly modify) the trial 
solution to obtain a new solution i.e. change a 
fraction of the current HP descriptors to other 
randomly selected descriptors and build a new 
kNN-MFA model for the new trial HP. 
(iv) Calculate the new value of the fitness 
function (q2new) for the new trial solution. 
(v) Apply the optimization criteria. If q2curr < 
q2

new the new solution is accepted and used to 
replace the current trial solution, if q2

curr > 
q2

new, the new solution is accepted only if the 
following Metropolis criterion is satisfied i.e. 
where rnd is a random number uniformly 
distributed between 0 and 1 and T is a 
parameter analogous to the temperature in 
Boltzmann distribution law, rnd < e- (q2

curr- 
q2

new) /T 
(vi) Steps iii-v is repeated until the 
termination condition is satisfied. The 
temperature-lowering scheme and the 
termination condition used in this work have 
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been adapted from Sun et al. Thus, every time 
when a new solution is accepted or when a 
preset number of successive steps of 
generating trial solutions (100 steps) do not 
lead to a better result, the temperature is 
lowered by 10% (the default initial 
temperature is1000). The calculations are 
terminated when either the current 
temperature of simulations is lowered to the 
value of (T) 10-6 or the ratio between the 
current temperature and the temperature 
corresponding to the best solution found is 
equal to 10-6.  
 
    Selection of dataset 

A set of 40 compounds used in 2D 
QSAR were now subjected to 3D QSAR 
analysis by advance kNN molecular field 
analysis. The 3D QSAR analysis resulted in 
six models for different combinations of test 
and training sets. Sphere exclusion algorithm 
method was opted for division of test and 
training set. Three models (Model 7, 8, 9) 
were obtained when dissimilarity value was 
set to 9.0. The set of compounds BZ2, BZ3, 
BZ5, BZ6, BZ7, BZ31, BZ33 and BZ37 -
comprised of test set and the remaining 
molecules were in training set where the 
value of dissimilarity value was set to 9.0. 
The other three models (Model 10, 11, 12) 
were obtained when dissimilarity value was 
set to 9.5. The compounds BZ1, BZ2, BZ3, 
BZ8, BZ9, BZ19, BZ32 and BZ33 comprised 
of test set and the remaining molecules were 
in the training set when the dissimilarity value 
was set to 9.5. The Unicolumn statistics for 
training set and test set for 3D study is 
reported in Table 5. Three advanced kNN 
molecular field analysis methods (SWFB, SA 
and GA) were employed in 3D QSAR 
analysis as shown in Table 6.  
 
      Validation of 3D Models 

This is done to test the internal 
stability and predictive ability of the QSAR 

models. Developed QSAR models were 
validated by the following procedures: 
 
        Cross-Validation Using Weighted k-
Nearest Neighbor 

The standard leave-one-out procedure 
was implemented and can be summarized as 
follows: 
(1) A molecule in the training set was 
eliminated, and its biological activity was 
predicted as the weighted average activity of 
the k most similar molecules (eq 1). The 
similarities were evaluated as the inverse of 
Euclidean distances between molecules (eq 2) 
using only the subset of descriptors 
corresponding to the current trial solution. 

 
(2) Step 1 was repeated until every 
molecule in the training set has been 
eliminated and its activity predicted once. 
(3) The cross-validated r2 (q2) value was 
calculated using eq. 3, where yi and y î are the 
actual and predicted activities of the ith 
molecule, respectively, and ymean is the 
average activity of all molecules in the 
training set. Both summations are over all 
molecules in the training set. Since the 
calculation of the pair-wise molecular 
similarities, and hence the predictions, were 
based upon the current trial solution, the q2 
obtained is indicative of the predictive power 
of the current kNN-MFA model. 

 
 
External Validation 

The following procedure was applied 
for external validation.  
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(1) Predict the biological activity of a 
molecule in the test set as the weighted 
average activity of the k most similar 
molecules in the training set (eq. 1). The 
similarities were evaluated as the inverse of 
Euclidean distances between molecules (eq. 
2) as calculated using the descriptors 
determined by the current model. 
(2) Step 1 was repeated for every molecule in 
the test set. 
(3) The predicted r2 (pred_r2) value was 
calculated using eq. 4, where yi and yˆ

i are the 
actual and predicted activities of the ith 
molecule in test set, respectively, and ymean is 
the average activity of all molecules in the 
training set. Both summations are over all 
molecules in the test set. The pred_r2 value is 
indicative of the predictive power of the 
current kNN-MFA model for external test set. 
 

 
 
Randomization Test 

To evaluate the statistical significance 
of the QSAR model for an actual data set, 
one-tail hypothesis testing was employed. The 
robustness of the QSAR models for 
experimental training sets was examined by 
comparing these models to those derived for 
random data sets. Random sets were 
generated by rearranging biological activities 
of the training set molecules. The significance 
of the models hence obtained was derived 
based on calculated Z-score. 
 
Evaluation of the QSAR Models 

The QSAR models were evaluated 
using following statistical measures: n, 
number of observations (molecules); Vn, 
number of descriptors; k, number of nearest 
neighbors; q2, cross-validated r2 (by the leave-
one-out method), pred_r2, predicted r2 for the 
external test set; Z-score, the Z score 
calculated by q2 in the randomization test; 

best_ran_q2, the highest q2 value in the 
randomization test, and R, the statistical 
significance parameter obtained by the 
randomization test. 
 
RESULTS & DISCUSSION 
 
2D QSAR approach 

The statistically significant model 
(Model 1) generated by multiple regression 
analysis method with r2 = 0.8350 as 
coefficient of determination was considered. 
Model 1 explains 84% of variance in the 
observed activity values. The model showed 
an internal predictive power q2=0.6147 of 
61% and predictivity for external test set 
pred_r2 = 0.5958 about 60%.  Model 2 was 
generated by partial least square analysis with 
four significant parameters with r2 = 0.8349 
as coefficient of determination. It is capable 
of explaining 83% of variance in the observed 
activity values. The model showed an internal 
predictive power q2=0.6137 of 61% and 
predictivity for external test set pred_r2 = 
0.5907 about 59%. Model 3 a bi-parametric 
model generated with principle component 
analysis with same distribution of test and 
training set. It confirmed that two alignment 
independent descriptors T_N_N_3 and 
T_2_C_4 play pivotal role in determining 
activity.  

The reported models Model 4, 5, and 
6 were found to be more significant in terms 
of statistics then the models obtained by SE 
algorithm. The statistical four parametric 
Model 4 with multiple regression analysis 
method with coefficient of determination   r2 
= 0.8393 is capable of explaining 84% of 
variance in the observed activity values. The 
contribution chart for Model 4 for the four 
descriptors discussed is shown in Figure 2. 
The model showed an internal predictive 
power (q2=0.7436) of 74% and predictivity 
for external test set (pred_r2 = 0.7826) about 
78%. The graph for experimental vs. 
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predicted activity for Model 4 is shown in 
Figure 3.  

Model 5 is a four parametric model 
generated with partial least square analysis 
method with coefficient of determination r2 = 
0.8317 is capable of explaining 83% of 
variance in the observed activity values. The 
model showed an internal predictive power 
(q2=0.7420) of 74% and predictivity for 
external test set (pred_r2 = 0.7578) about 
76%. The contribution chart and graph for 
experimental versus predicted activity for 
Model 5 is shown in Figure 4 and Figure 5 
respectively.  Model 6 is generated using 
principle component analysis with same 
distribution of test and training set. The model 
confirmed the role of three descriptors which 
contributed in determining the biological 
activity. The contribution chart and graph for 
experimental vs. predicted activity is shown 
in Figure 6 and Figure 7 respectively. 

The statistically significant Model 4 
has shown a positive correlation with 
chi3Cluster, T_T_N_7 and a negative 
correlation with T_N_O_5 and HDonor 
count. As a positively contribution descriptor 
(41%), T_T_N_7 is an alignment independent 
descriptor influencing the activity. This 
descriptor means the count of fragments 
having any heavy atom and a nitrogen atom 
separated by seven bond distance. The 
descriptor indicates that any substituent at 6th 
position of benzimidazole should possess 
nitrogen atom. In the same model, descriptor 
chi3Cluster is directly proportional to activity, 
indicating the importance of fused rings or 
branched molecules are important in 
determining biological activity. This 
descriptor signifies simple 3rd order cluster chi 
index in a compound.  The descriptors 
T_N_O_5 was inversely proportional to the 
activity. This is the count of number of 
oxygen atoms (single, double or triple 
bonded) separated from oxygen atom by 5 
bond distance in a molecule (N-C-C-C-C-O). 
In the same model H Donor count that is the 

number of hydrogen atoms is inversely 
proportional to activity and thus adding 
hydrogen atoms are not conducive for the 
activity. The proposed models provide 
significant interpretations due to the fact that 
they provide an insight into role of various 
moieties featuring interactions in determining 
activity, secondly both internal and external 
validation procedures were used for the 
validation of the model significance, lastly 
both the models have improved correlation 
coefficient r2 and cross validation q2 values 
along with a significant predictive ability 
(pred_r2). The data for predicted activity for 
all the 2D models is reported in Table 4. 
 
3D kNN Molecular field approach 

In 3D QSAR analysis the descriptors 
that get selected in a given model were the 
field points either of steric of electrostatic 
nature at particular locations in a common 
grid around reported set of molecules. For 
utilizing these descriptors for new ligand 
design, the field values at different grid points 
of compounds cluster having most active 
compound were considered (Figure 8). The 
extrema of field values of compounds in the 
cluster of most active compounds decide 
range of field values which is preferred and 
recommended for new compound design. 
Activity distribution plot for 3D QSAR 
Model 7, 8, 9 is shown in Figure 9.  In the 
analysis, Model 7 the triparametric model 
obtained by SWFB as shown in Figure 10 
indicates that three steric interactions are 
contributing to activity. The descriptor S_566 
(21.7998, 30.0000) has shown positive range 
inferring that analogs with large aromatic and 
aliphatic substitutents will result in better 
biological activity at 6th position. However the 
descriptor S_1321 (-0.3085 to -0.1401) 
suggests bulky groups can be detrimental to 
activity at 4th position of benzimidazole. The 
descriptor S_1958 (30.0000 to 30.0000) 
exhibiting positive range implying that 
bulkier groups like –C2H5, C3, 7H7, C4H9 



 Parate et al___________________________________________________________________ 

AJPCT1[2][2013]149-177  

might result in improved biological activity. 
The graph of experimental vs. predicted for 
Model 7 is shown in Figure 11. The Model 8 
was not found to be significant in terms of 
statistics and thus cannot be exploited in 
designing of novel analogs. Model 9 obtained 
from GA was found to have analogous 
contribution of descriptors  as discussed in 
Model 10 in detail except for steric interaction 
which is exhibiting positive contribution as 
shown in Figure 12, S_1088 (2.7412 to 
4.0075) where bulky aromatic and aliphatic 
systems are more favorable for activity at 6th 
position. The graph for experimental vs. 
predicted activity is shown in Figure 13. In 
the study the kNN-MFA Model 10, 11, 12 
obtained by using the three variable selection 
methods, stepwise forward backward variable 
selection (SWFB), simulated annealing (SA), 
genetic algorithm (GA) shows steric and 
electrostatic interactions. In Model 10 three 
descriptors in kNN SWFB method plays 
major role in determining activity. The 
activity distribution plot for Model 10, 11, 12 
is given in Figure 14. The model implies the 
significant role of the electrostatic field 
interaction for structure activity relationship. 

Statistically kNN-SWFB is better as 
compared to SA and GA with respect to both 
the internal (q2 = 0.77) and external (pred_r2= 
0.75) model validation and correctly predicts 
~ 77% and ~ 75% for the training and test set 
respectively in Model 10, 11, 12. It uses two 
electrostatic field descriptors E_929, E_1786 
and one steric descriptor S_1319 with its 
nearest neighbor (k=5) to evaluate the activity 
of new molecule. Model 10 for kNN SWFB 
algorithm the plot of the kNN-MFA shows 
the relative position and ranges of the 
electrostatic and steric fields in the model 
provide guidelines for new molecule design 
as shown in Figure 15. The descriptor E_929 
(-10.0000, -4.1791) suggest that 
electronegative groups are preferred in the 
region (6th position of benzimidazole) where 
hetero-aromatic moiety with electronegative 

groups or atoms like (electronegative atoms 
like N, N in benzimidazole, imidazole, 
imidazo pyridazine, N, O in benzoxazoles, N, 
S in benzthiazoles) might result in conducive 
activity. However, the descriptor S_1319 (-
0.1381 to -0.1292) in the region (4th position 
of benzimidazole) suggest that less bulkier 
groups imparting less steric hindrance are 
favored to give appreciable biological 
activity. Unsubstituted or less bulky groups 
like H, CH3 at the benzimidazole are 
preferred at this position. The electrostatic 
descriptor E_1786 (-10.0000 to 0.2402) at the 
terminal biphenyl moiety again suggest that 
the electronegative atoms at the proximal 
phenyl moiety like carboxylic and tetrazole 
moiety will always be conducive to activity. 
This triparametric model can assist in 
designing of novel analogs with improved 
biological activity. The graph of experimental 
versus predicted activity is shown in Figure 
16. 

The triparametric Model 12 obtained 
by GA is in parity with Model 7 obtained 
from SWFB with dissimilarity value 9.0. It 
indicates that three steric interactions at 
various points of substitution play major role 
in determining biological activity implying 
the major role of steric field interaction for 
illustrating structure activity relationship as 
shown in Figure 17. The external validation is 
not considerably high in this mathematical 
model.  The descriptor S_929 (30.0000 to 
30.0000) exhibiting positive range 
analogously suggest as in S_566 that analogs 
with bulky aromatic and aliphatic 
substitutents will enhance biological activity 
at 6th position in benzimidazole. However the 
descriptor S_932 (-0.0044 to -0.0041), 
suggests that the groups at 4th position should 
not possess bulky groups as they can be 
detrimental to activity. The steric parameter is 
in full compliance with the steric interaction 
obtained in the previous SWFB model. The 
descriptor S_1945 (-0.4802 to -0.4698) 
exhibiting negative range implying that less 
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bulkier groups might result in improved 
biological activity. The graph of experimental 
vs. predicted is shown in Figure 18. The data 
for predicted activity for all 3D the models is 
reported in Table 4. 
 
CONCLUSION 

A QSAR study on 40 derivatives, 
Angiotensin antagonists for AT1 receptor 
acting as antihypertensive agents is described 
in this research. The model validation was 
done by creating different combination of test 
and training set by SE algorithm and manual 
method of selection. Amongst all the six 
models obtained in 2D QSAR analysis, 
Model 4 obtained by MLR was statistically 
significant in 6 substituted benzimidazoles. 
The model was investigated for reliability and 
stability by using statistical analysis criteria 
The resultant Models 4 and Model 5 (r2 = 
0.84 and r2 = 0.83) suggest importance of 
hydrogen bonding, electrostatic interaction, 
and the shape/size of the molecules in 
determining the activities in 2D QSAR 
analysis. Since PLS approach utilizes 
simultaneously information of available 
dependent response (i.e., activity) and 
independent variables (molecular descriptors) 
while building the QSAR model, it offers a 
significant advantage to compare behavior of 
common subset descriptors toward individual 
activity. Similarly In 3D QSAR analysis, 
advanced kNN MFA Model 10 Step Wise 
Forward Back Ward kNN Method  (q2 = 
0.77) yielded a triparametric model with 
contributing descriptors E_929, S_1319 and 
E_1786 and Model 12 (q2 = 0.67) provided 
confidence in robustness of descriptors 
toward data distribution. The developed 
models have consistent contribution 
(percentage) of descriptors toward activities 
and statistical significance with different 
training and test sets (Manual method and SE) 
which could be immensely useful in 
exploring and understanding the structural 
requirements for the design of novel 

angiotensin II receptor antagonists as 
antihypertensive agents. QSAR model 
validation becomes an essential part in the 
development of a statistically valid and 
predictive model, because the real utility of a 
QSAR model was to design and predict 
accurately the modeled properties of the 
newly synthesized compounds as anti-
hypertensive agents. 
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Table 1. AT1 Receptor Binding of Substituted Benzimidazoles at the Phenylene Ring 

Substituted with Alkylamino and Acylamino  Residues in and Substituted with Nitrogen-

Containing Heterocycles 

N
N

COOH

R1

4

5
6

7

N
N

XH

R1

N
N

XH

R1

R2

(BZ1-BZ17) (BZ18-BZ30) (BZ31-BZ40)  
 

C. No. R1 R2 XH IC50 nMa 

Actual 

Log 

(1/IC50 nM) 

BZ1 H - - 400 6.397940 

BZ2 4-CH3 - - 1200 5.920819 

BZ3 5-CH3 - - 1200 5.920819 

BZ4 6-CH3 - - 850 6.070581 

BZ5 7-CH3 - - 480 6.318759 

BZ6 4-NH2 - - 1700 5.769551 

BZ7 5-NH2 - - 820 6.086186 

BZ8 6-NH2 - - 540 6.267606 

BZ9 7-NH2 - - 1060 5.974694 

BZ10 4-NHCOCH3 - - 5700 5.244125 

BZ11 5-NHCOCH3 - - 460 6.337242 

BZ12 6-NHCOCH3 - - 180 6.744727 

BZ13 7-NHCOCH3 - - 1800 5.744727 
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BZ14 4-NHCONHC6H11 - - 29300 4.533132 

BZ15 5-NHCONHC6H11 - - 800 6.096910 

BZ16 6-NHCONHC6H11 - - 26 7.585027 

BZ17 7-NHCONHC6H11 - - 160 6.795880 

BZ18 CH3(CH2)4NH - -COOH 390 6.408935 

BZ19 
N

 

 -COOH 160 6.795880 

BZ20 CH3(CH2)3 CONH-  -COOH 86 7.065502 

BZ21 (CH3)2 NCONH-  -COOH 24 7.619789 

BZ22 

CH3C6H11NHCO

N- 

 

 -COOH 26 7.585027 

BZ23 
CH3(CH2)3 SO2N- 

CH3 
 -COOH 33 7.481486 

BZ24 N

S

O O

 

 -COOH 34 7.468521 

BZ25 N

O

 

 -COOH 81 7.091515 

BZ26 C6HllNHCONH  -tetrazole 21 7.677781 

BZ27 
CH3C6H11NHCON

- 
 -tetrazole 10 8.000000 

BZ28 (CH3)2NCONH-  -tetrazole 8 8.096910 

BZ29 N

S

O O

 

 -tetrazole 3 8.522879 

BZ30 N

O

 

 -tetrazole 4 8.397940 

BZ31 
N

N

 

CH3 -COOH 3 8.522879 
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a In vitro binding AT1 Receptor Binding of  Substituted Benzimidazoles. 

 

 

 

 

 

 

BZ32 
N

N

 

H -COOH 3 8.522879 

BZ33 
N

N

 

CH3 tetrazole 13 7.886057 

BZ34 
N

N

 

H tetrazole 5 8.301030 

BZ35 
N

N

 

CH3 -COOH 4 8.397940 

BZ36 
N

N

 

CH3 tetrazole 3 8.522879 

BZ37 
N

 

CH3 tetrazole 5 8.301030 

BZ38 
N

 

H tetrazole 11 7.958607 

BZ39 
O

N

 

H tetrazole 240 6.619789 

BZ40 (CH3)2N-CH2 - CH3 -COOH 158 6.801343 
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Table 2. Unicolumn statistics of the training and test sets for Model 1, 2, 3 

a Unicolumn statistics for 2D model generated by sphere exclusion method with 
dissimilarity value 2.2 for training set where n=30 
b Unicolumn statistics for 2D model generated by sphere exclusion method with 
dissimilarity value 2.2 for test set. 
c  Unicolumn statistics for the  2D  model generated by manual method for training set 
d Unicolumn statistics for 2D  model generated by manual method for test set. 

 

Table 3. Statistical Analysis of Multiple Regression, Partial Least Square and 

Principle Component analysis 

Name  Column Average Max Min Std. Dev Sum 

For Model 1, 2, 3 

Columna 7.3511 8.5229 4.5331 1.0327 220.5332 

Columnb 6.1322 6.7959 5.7447 0.3245 61.3221 

For Model 4, 5, 6 

Columnc 7.1303 8.5229 4.5331 1.0647 228.1686 

Columnd 6.7108 8.5229 5.9208 0.9824 53.6867 

Parameter 

2D – Multiple 

Regression 

Analysis
a
 

Model 1 

2D – 

Partial 

Least 

Square 

Analysis
b 

2D – Principle 

Component 

Analysis
c
 

Model 3 

2D – Multiple 

Regression 

Analysis
d
 

Model 4 

2D – Partial 

Least Square 

Analysis
e 

Model 5 

2D – Principle 

Component 

Analysis
f
 

Model 6 

Descriptor_1 

(Coefficient) 

T_N_N_3 

-1.8105 

(±0.2758) 

T_N_N_3 

-1.8209 

T_N_N_3 

-1.7740 

T_T_N_7 

0.1438 

(±0.0041) 

T_T_N_7 

0.1317 

T_T_N_7 

(0.1512) 

Descriptor_2 

(Coefficient) 

T_2_C_4 

0.0797 

(±0.0009) 

T_2_C_4 

0.0795 

T_2_C_4 

0.0623 

T_N_O_5 

-1.1280 

(±0.2311) 

T_N_O_5 

-1.2551 

T_N_O_5 

(-1.1383) 

Descripter_3 

(Coefficient) 

SaaOcount 

-1.5170 

(±0.4601) 

Slogp 

-0.3994 
- 

H-Donor 

Count 

-0.4662 

H-Donor 

Count 

-0.5041 

H-Donor 

Count 

(-0.3946) Descripter_4 

(Coefficient) 

Slogp 

-0.3946 

(±0.1285) 

SaaOcount 

-1.4864 
- 

chi3Cluster 

0.7855 

(±0.3699) 

chi3Cluster 

0.6336 
- 

Constant 4.3229 4.3688 3.0049 4.8400 5.3782  

Degree of freedom 25 26 28 27 30  

Optimum 

Components 
- 3 1 - 1 2 



 Parate et al___________________________________________________________________ 

AJPCT1[2][2013]149-177  

a  Statistical data for 2D model generated by multiple regression method with  sphere  
    exclusion method with dissimilarity value 2.2 for training set in Model 1 
b  Statistical data for2D model generated by partial least square method with  sphere  
    exclusion method with dissimilarity value 2.2 for training set  in Model 2 
c  Statistical data for2D model generated by principle component method with  sphere  
    exclusion method with dissimilarity value 2.2 for training set in Model 3 
d  Statistical data for 2D model generated by multiple regression method with  manual  
    method  in Model 4 
e  Statistical data for2D model generated by partial least square method with  manual  
    method in Model 5 
f  Statistical data for 2D model generated by principle component method with manual    
  method  in Model 6 

n (training/test) 30 30 30 32 32 32 

r
2
 0.8350 0.8349 0.7137 0.8393 0.8317 0.8140 

q2 0.6147 0.6137 0.6205 0.7436 0.7420 0.7496 

F test 31.6186 43.8298 69.7855 35.2605 148.2101 63.4565 

r
2
 se 0.4519 0.4432 0.5624 0.4573 0.4440 0.4747 

q
2
 se 0.6904 0.6779 0.6474 0.5777 0.5497 0.5509 

pred_r
2
 0.5958 0.5907 0.5994 0.7826 0.7578 0.7562 

pred_r
2

se 0.8425 0.8478 0.8388 0.5036 0.5315 0.5333 

ZScore R^2 6.48286 6.63543 17.60610 8.03616 10.16299 10.69093 

ZScore Q^2 5.68628 4.95703 12.18563 7.24712 7.67120 9.61975 

Best Rand R^2 0.55856 0.53391 0.14779 0.42231 0.39401 0.27600 

Best Rand Q^2 0.33302 0.39398 0.03964 0.20066 0.13737 0.13197 

Alpha Rand R^2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Alpha Rand Q^2 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 

Z Score Pred R^2 1.94044 1.92461 1.89192 1.40344 1.36147 1.72687 

best Rand Pred R^2 0.57464 0.79754 0.53357 0.76818 0.81602 0.67705 

alpha Rand Pred 

R^2 
0.05000 0.05000 0.05000 0.10000 0.10000 0.05000 
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Table 4. Predicted activity for Model 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Comp. 

No. 

Actual 

log 

(1/IC50 

nM) 

Predicted 

MLR 

Model 1 

Predicted 

PLS 

Model 2 

Predicted 

PCA 

Model 3 

Predicted 

MLR 

Model 4 

Predicted 

PLS 

Model 5 

Predicted 

PCA 

Model 6 

Predicted 

kNN_SWFB 

Model 7 

Predicted 

kNN_SA 

Model 8 

Predicted 

kNN_GA 

Model 9 

Predicted 

kNN_SWFB 

Model 10 

Predicted  

kNN_SA 

Model 11 

Predicted  

kNN_GA 

Model 12 

BZ1 6.397940 6.579481** 6.585741** 6.553244** 6.047914** 6.271575** 6.350986** 6.598000 6.358720 6.837460 6.272630** 6.000250** 5.779570** 

BZ2 5.920819 6.617161** 6.621524** 6.677747** 6.209044** 6.401543** 6.350986** 8.397940** 7.650820** 8.100240** 6.272800** 5.998710** 5.779570** 

BZ3 5.920819 6.617161** 6.621524** 6.677747** 6.274682** 6.454487** 6.350986** 6.809260** 7.895740** 8.475870** 6.331180** 6.090670** 5.940080** 

BZ4 6.070581 6.537476** 6.542047** 6.615495** 6.274682 6.454487 6.350986 6.707150 8.183920 7.097130 6.378800 5.704690 6.412020 

BZ5 6.318759 6.696846 6.701001 6.739998 6.213453 6.405099 6.350986 6.223940** 6.673300** 5.976100** 6.236440 5.594190 5.186820 

BZ6 5.769551 4.933819** 4.931743** 4.779264** 6.174345 6.292642 6.409962 6.380160** 6.411000** 5.954760** 6.258410 5.703090 5.375780 

BZ7 6.086186 6.744329 6.752593 6.553244 6.096148 6.213860 6.258771 6.223950** 6.412460** 6.791340** 6.192440 5.640110 6.527330 

BZ8 6.267606 6.744329** 6.752593** 6.553244** 6.239983** 6.345586** 6.409962** 6.120240 6.005170 6.901420 6.989830** 6.258020** 8.335680** 

BZ9 5.974694 4.933819 4.931743 4.779264 6.178754** 6.296198** 6.409962** 6.179490 5.756210 5.806870 6.181510** 6.256810** 5.779230** 

BZ10 5.244125 5.502551 5.496795 5.339526 5.312843 5.252497 5.271652 6.093910 5.669580 5.702620 4.533130 5.808660 5.555040 

BZ11 6.337242 7.233376** 7.238168** 7.051255** 6.638098 6.682416 6.561153 4.533130 5.902940 5.816650 6.103700 5.590730 6.538280 

BZ12 6.744727 7.233376 7.238168 7.051255 6.781933 6.814142 6.712344 6.399130 5.990910 6.812460 6.002820 6.605980 6.198680 

BZ13 5.744727 5.422866** 5.417318** 5.277275** 5.317252 5.256053 5.271652 6.527200 6.366420 5.914420 6.269140 6.181740 5.529360 

BZ14 4.533132 5.315591 5.300496 5.713034 5.632233 5.460622 5.633010 6.224320 6.569440 5.670100 5.244130 5.950780 5.787220 

BZ15 6.096910 7.046416** 7.041870** 7.424762** 6.669818 6.627089 6.620129 5.244130 6.043770 6.043250 6.443490 6.494580 6.414430 

BZ16 7.585027 7.046416 7.041870 7.424762 6.957488 6.890541 6.922511 6.393350 6.429790 7.103960 7.400280 8.072900 7.434230 

BZ17 6.795880 5.235906** 5.221020** 5.650782** 5.636642 5.464178 5.633010 7.962600 7.879600 7.571330 6.172950 7.622320 6.265090 

BZ18 6.408935 6.345782 6.343311 6.864501 6.461234 6.555464 6.712344 6.948450 6.360110 7.024770 6.118380 5.589970 6.315220 

BZ19 6.795880 6.905914 6.905547 7.113506 7.172773** 7.273140** 7.258132** 6.090610 6.805230 5.663370 7.652940** 5.667130** 7.247630** 

BZ20 7.065502 7.010678 7.009229 7.238008 6.831838 6.870103 6.863535 6.382450 6.561960 5.977650 7.169820 8.072900 7.627090 

BZ21 7.619789 7.180071 7.184215 7.051255 7.627414 7.574651 7.468299 8.136070 7.805940 7.643200 7.820720 8.021430 7.921230 

BZ22 7.585027 7.560014 7.555826 7.736019 7.072329 7.064084 6.863535 7.723420 8.015970 6.139420 7.034680 6.782070 7.060200 

BZ23 7.481486 7.376205 7.376848 7.362511 7.316608 7.404866 7.409323 6.780250 7.481490 7.481490 7.284610 7.488520 7.210960 

BZ24 7.468521 7.632637 7.634043 7.487014 7.422096 7.505661 7.560514 7.384830 7.585030 7.585030 8.005180 8.055600 7.724650 

BZ25 7.091515 7.491125 7.491987 7.424762 7.477738 7.534834 7.409323 7.645220 7.865030 7.531640 7.572430 8.131660 7.642480 



 Parate et al___________________________________________________________________ 

AJPCT1[2][2013]149-177  

** Compounds in test set. 

Table 5. Unicolumn statistics of the training and test sets for Model 7, 8, 9 

BZ26 7.677781 7.569578 7.566685 7.673768 7.689573 7.575292 7.829657 7.724510 7.802010 7.686180 7.944070 8.072900 7.902300 

BZ27 8.000000 7.799046 7.795411 7.860521 8.235919 8.144014 8.224254 7.686060 8.004150 7.999540 7.319220 7.940020 7.803120 

BZ28 8.096910 7.703233 7.709030 7.300260 8.359500 8.259403 8.375445 7.648160 7.799610 7.677430 7.493870 7.917880 7.769520 

BZ29 8.522879 8.155799 8.158859 7.736019 8.154182 8.190412 8.467660 7.622700 7.776260 6.385790 8.223280 7.837810 7.948550 

BZ30 8.397940 8.014287 8.016802 7.673768 8.209824 8.219586 8.316469 6.223950 5.924710 5.727190 8.331150 7.859370 8.337600 

BZ31 8.522879 8.150179 8.143750 8.234029 8.130387 8.092680 7.711705 8.522880** 7.540110** 8.182080** 8.392740 7.903880 7.826840 

BZ32 8.522879 8.032814 8.028490 8.047275 7.969256** 7.962711** 7.711705** 7.977080 6.444720 7.349920 7.956400** 7.868210** 8.097760** 

BZ33 7.886057 8.673341 8.668565 8.483034 8.862472** 8.777431** 8.618851** 7.649270** 7.834110** 8.047840** 7.691870** 7.663110** 7.338320** 

BZ34 8.301030 8.555976 8.553305 8.296280 8.701342 8.647463 8.618851 7.977080 6.740490 7.529970 7.732580 7.948250 7.856160 

BZ35 8.397940 8.066840 8.061753 8.109527 8.027259 8.009496 7.711705 7.724640 7.877710 8.193500 8.519510 7.928870 7.737880 

BZ36 8.522879 8.590002 8.586568 8.358532 8.759344 8.694247 8.618851 8.518510 7.539350 8.268330 8.240410 7.903880 7.627290 

BZ37 8.301030 8.309550 8.308592 8.047275 7.922154 7.956134 8.014087 8.393350** 7.515090** 8.209940** 7.730010 7.644730 7.681920 

BZ38 7.958607 8.192185 8.193332 7.860521 7.761023 7.826165 8.014087 7.360040 6.728810 7.080710 8.522650 7.715400 7.814100 

BZ39 6.619789 6.619800 6.647341 8.047275 7.038738 6.914021 7.026968 7.286520 7.696770 7.607720 7.917670 8.284500 8.259440 

BZ40 6.801343 7.125448 7.131283 6.926752 7.265432 7.316463 6.955750 6.159550 6.044880 5.718830 6.205960 6.947000 7.547810 

Model 7, 8, 9 

Name  Column Average Max Min Std. Dev. Sum 

Columna 7.0978 8.5229 4.5331 1.0296 227.1292 

Column
b
 6.8408 8.5229 5.7696 1.1794 54.7261 

Model 10, 11, 12 

Column
c
 7.1303 8.5229 4.5331 1.0647 228.1686 

Column
d
 6.7108 8.5229 5.9208 0.9824 53.6867 
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a Unicolumn statistics for the 3D model generated by sphere exclusion method with 
dissimilarity value 9.0 for training set 
b Unicolumn statistics for the 3D model generated by sphere exclusion method with 
dissimilarity value 9.0  for test set. 
c Unicolumn statistics for 3D  model generated by sphere exclusion method with  
   dissimilarity value 9.5  for training set. 
d Unicolumn statistics for 3D  model generated by sphere exclusion method with  
    dissimilarity value 9.5  for test set. 
 

Table 6. Statistical Analysis of kNN Stepwise forward backward variable selection 

Simulated Annealing and Genetic Algorithm models 

 

 

 

Parameter 

3D kNN- MFA 

(Stepwise 

Forward 

Backward 

SW_FB) 

3D kNN- 

MFA 

(Simulated  

Annealing 

SA ) Model 

3D kNN- MFA 

(Genetic 

Algorithm 

GA) Model 9 

3D kNN- MFA 

(Stepwise 

Forward 

Backward 

SW_FB) 

3D kNN- MFA 

(Simulated  

Annealing SA 

) Model 11 

3D kNN- MFA 

(Genetic 

Algorithm 

GA) Model 12 

Descriptor_1 

(coefficient) 

S_566 

21.7998    

30.0000 

S_750 

-2.3935    -

0.2561 

E_592 

-0.4456    -

0.0181 

E_929 

-10.0000    -

4.1791 

S_566 

-0.0004    -

0.0003 

S_929 

30.0000  

30.0000 

Descriptor_2 

(coefficient) 

S_1321 

-0.3085    -

0.1401 

- 

S_1088 

2.7412    

4.0075 

S_1319 

-0.1381    -

0.1292 

 

S_932 

-0.0044    -

0.0041 

Descripter_3 

(coefficient) 

S_1958 

30.0000    

30.0000 

- 

 

E_1789 

-0.6973    -

0.3994 

E_1786 

-10.0000    

0.2402 

 

S_1945 

-0.4802    -

0.4698 

knn method 5 - 5 5 5 3 

Degree of freedom 28 27 27 28 27 27 

n (training/test) 32 32 32 32 32 32 

q
2
 0.8144 0.5681 0.4990 0.7754 0.5930 0.6744 

q
2
 se 0.4436 0.6766 0.7287 0.5046 0.6792 0.6075 

pred_r
2
 0.8152 0.1079 0.6414 0.7592 0.7519 0.3382 

pred_r2
se 0.5206 1.1438 0.7252 0.5299 0.5379 0.8785 
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Figure.1. Activity distribution plot for 2D QSAR models 

 

Figure.2. Contribution Chart for Model 4 
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Figure.3. Graph experimental Vs predicted activity for Model 4 

 

Figure.4. Contribution Chart for Model 5 
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Figure.5. Graph experimental Vs predicted activity for Model 5 

 

Figure.6. Contribution Chart for Model 6 
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Figure.7. Graph experimental Vs predicted activity for Model 6 

 

Figure.8. Template based alignment for 3D QSAR study 
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Figure.9. Activity distribution plot for 3D QSAR Model 7, 8, 9 

 

Figure.10. Plot for Model 7 for Stepwise forward backward kNN MFA analysis 
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Figure.11. Graph experimental Vs predicted activity for Model 7 

 

Figure.12. Plot for Model 9 for Genetic Algorithm kNN MFA analysis 
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Figure.13. Graph experimental Vs predicted activity for Model 9 

 

Figure.14. Activity Distribution plot for 3D QSAR study for Model 10, 11, 12. 
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Figure.15. Plot for Model 10 for Stepwise forward backward kNN MFA analysis 

 

Figure.16. Graph experimental Vs predicted activity for Model 10 
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Figure.17. Plot for Model 12 for Genetic Algorithm  kNN MFA analysis 

 

Figure.18. Graph experimental Vs predicted activity for Model 12 


