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Abstract
When it is not overtly affecting human beings, the Tick-Borne Encephalitis 
Flavivirus (TBEV) remains mostly unnoticed during its enzootic cycles within 
vectors and unaffected animal species. Until recently, Belgium was “presumed” 
free of this important neuro-pathogenic virus without any scientific substantiation. 
Nonetheless, Belgium is clearly at risk of Tick-Borne Encephalitis (TBE) emergence 
and incursions from endemic zones in the neighboring countries.

This comparative review paper describes 5 Belgian veterinary serological studies 
with enzyme-linked immunosorbent assays and seroneutralisation tests (ELISA/
SNT), in which several surveillance schemes were used (active/passive, risk-/
laboratory-/range-based) in classic TBE sentinel species (dogs, cattle, roe 
deer, wild boar). Additionally, passive syndromic surveillance in two medical 
laboratories resulted in inconclusive medical data. Details are given on the 
scientists’ experiences with available first/second line diagnostic tests and with 
the different surveillance methods/survey designs.

Each of the veterinary studies clearly demonstrated the presence of TBEV-specific 
antibodies in Belgian sentinels, sometimes even at high seroneutralisation 
(SNT) titers, while the medical data remain so far inconclusive, despite positive 
reactions of some patients in some TBEV-tests. These results have substantiated 
our suspicion of TBEV-presence in Belgium from 2010 onwards and have allowed 
sentinel comparisons based on “suitability criteria”. Furthermore, the studies 
have highlighted the need for further veterinary validation of commercial ELISA-
tests in comparison to the gold standard SNT.
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Introduction
The Western/European subtype of Ticktick-Borne Encephalitis 
Virus (W/Eu-TBEV) or Frühsommer Meningoenzephalitis (FSME) 
has been the most important, highly pathogenic and neurotropic 
arthropod-borne flavivirus in Europe for a long time [1-4]. 
This flavivirus is carried by tick vectors: Mostly by sheep ticks 
Ixodes ricinus [5,6] and to some extent by the ornate dog tick 
Dermacentor reticulatus [7].

Tick-Borne Encephalitis (TBE) has become a considerable 
public health risk in many European countries with currently 
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on average 3,000 hospitalized encephalitis-meningitis-myelitis 
cases per year, and with long-term sequelae and disability in 
up to 60% of patients [3-4,8]. The strong increases (1970-2000) 
and fluctuations (>2000) in human TBE incidence in Central and 
Eastern European countries and the emergence of the disease 
in Scandinavian countries and France (>2000), have sparked 
international concern and research [1,9-16]. 

In general, domestic and wild animals appear to be relatively less 
frequently infected and affected by TBEV. Although in most of 
the infected animal species there is viremia and seroconversion 
without clinical signs [17-24], TBEV can nevertheless cause 
general and multifocal neurological clinical signs in dogs and 
horses [25-31]. Additionally, domestic animals may carry infected 
ticks from endemic to non-endemic areas and into close vicinity 
of humans [17,20,27,32-36].

The zoonotic iceberg analogy, as proposed by Randolph and 
Sumilo [37], allows capturing the complexity of real-life TBEV 
epidemiology and surveillance (Figure 1). It has been amply 
shown in several countries that the majority of human TBEV 
exposures do not lead to clinical signs; hence the confirmed 
cases represent only the very tip of the zoonotic iceberg [37,38]. 
When it is not overtly affecting human beings, the TBE-flavivirus 
remains mostly unnoticed during its enzootic cycles within its 

vectors and unaffected animal species [37,38]. This “bulk” of the 
iceberg may be much larger and may involve a large variety of 
domestic and wild animal species, all known to be I. ricinus hosts 
[20,24].

As a natural result, there can exist discordance between clinical 
case prevalence in humans and the prevalence of TBEV in 
ticks and sentinels in an endemic area [39-44]. For these eco-
epidemiological reasons, it is stated by international bodies 
and many scientists that medical TBE case reporting alone is 
unreliable to characterize a geographical area or public health 
risk, even in regions where TBE is highly endemic [4,8,45].

Consequently, both veterinary and tick studies have clearly 
proven their added value in known TBE endemic areas and 
specifically in areas or countries with few or no human cases 
and/or few suspected/endemic areas, as an early warning for 
suspected endemic areas, such as in Norway, Denmark, Japan, 
the Netherlands, Luxembourg, Spain. Veterinary TBEV sentinel 
surveillance studies were recently reviewed [29,46,47]. Appendix 
A for a reproduction of the review tables in Roelandt, 2016 [47].

Despite a total lack of confirmed human TBE cases in Belgium, 
here are strong suspicions in the Belgian medical-scientific 
community that some cases may have occurred in the last decade 

Figure 1 The Zoonotic Iceberg Analogy for TBE epidemiology created based on Randolph and Sumilo; Drelich et al. [37,48].
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(pers. comms.) and favorable environmental/climatological (a)
biotic conditions for Ixodid ticks and TBEV are present. Belgium 
is clearly at risk of TBE emergence and incursions from endemic 
zones in neighboring countries Germany and France [48,49]. 

The aim of this paper is to review the TBEV surveys performed 
by different Belgian research institutes in humans and in 
sentinel animal species between 2000 and 2016. The goal of this 
comparative paper is to draw some lessons from these studies 
to enable the design of a potential future national one health 
TBE(V) surveillance and to estimate the public health risk of this 
emerging tick-borne disease for Belgium.

Materials, Medical and Veterinary 
Belgian TBEV Studies*

In the following subsections, the diagnostic tests and survey 
designs of each of the five Belgian TBEV-studies will be briefly 
described. These survey characteristics are then summarized in 
Table 1. There are restrictions on the availability of raw materials 
or information from the studies to which the authors did not 
participate… *Any materials, raw data and protocols associated 
with each original publication should be requested from the 
respective contact authors.

Medical passive surveillance in Humans
During 2000-2016, no autochthonous TBE cases were reported 
and the virus was not considered to be endemic in Belgium [8,50-
52]. In this time frame, there was only one published paper which 
tried to identify TBE in four human patients with a viral CNS 
infection of unknown etiology from Belgium. None of the four 
Belgian patients included in this study were confirmed as a TBE 
case [53]. During this whole period, passive medical surveillance 
was performed at only one laboratory at a time: Queen Astrid 
Military Hospital, i.e. QAMH (QAMH, 2000-2011), the Belgian 
Institute of Public Health (IPH, 2010-2015) and the Institute of 
Tropical Medicine, i.e. ITM (ITM, 2014-ongoing) (Table 1).

The QAMH (Brussels) performed the first serological first-line 
screening with the Virotech® IgG/IgM ELISA (Sekisui Diagnostics®-
Genzyme Virotech) in 359 suspect tick bite and neurology 
patients. Of these, 55 tested IgG positive (15.32%) and 19 tested 
IgM positive (5.29%). However, none of these results could be 
confirmed in SNT and patient histories are unknown.

Since 2010, the TBE National Reference Centre (NRC) at the 
Institute of Public Health, i.e., IPH (Brussels) has used the 
European case definition [8,54] and has offered serological and 
Polymerase Chain Reaction (PCR) screening to the medical sector 
as part of a diagnostic service of the referral laboratory and a 
limited passive surveillance system with voluntary reporting of 
Central Nervous System (CNS) cases 8. During 2010-2016, the 
Belgian TBE-NRC (WIV-ISP) has been using Progen Immunozym 
FSME/TBEV IgM and IgG kits to screen human patients [55,56] and 
the TBEV-SNT as a confirmation test [57]. SNT-results from ≥1/10 
onwards are considered sufficiently protective against clinical 
TBE, but titers are usually much higher after full vaccination 
[58-60]. Additionally, comparative immunofluorescence assay 
IFA Biochips (Mosaic 3, Euroimmun®, Germany) [61] and qRT-
PCR been available at the IPH and current best practices in TBE-
diagnostics are followed.

As such, TBE tests have been performed on patients suspected 
of neuroborelliosis and on cases that were sent by general 
practitioners or hospitals based on direct TBE clinical suspicion. 
In 60 samples from 2009, 10 reacted in IgG ELISA (borderline 
or positive), one was positive in IgM-ELISA and seven reacted 
positive in SNT. In 2014, 53 suspected patients were tested and a 
total of 18 samples were IgG-ELISA-positive or -borderline, while 
three were SNT-positive, but none were IgM-ELISA-positive.

No samples were positive for all three tests together, and since 
convalescent (paired) samples were not available and the TBE/
flavivirus vaccination status of the patients is unknown, the 
interpretation of these results remains inconclusive. So far, 
six imported cases of human TBE imported from Scandinavia, 
Austria, Kyrgyzstan and Slovenia have been confirmed by the IPH. 

Currently, the ITM (Antwerp) is hosting the TBEV-NRC. None 
of the Belgian medical samples submitted in between 2014-16 
were positive in serology (n=40) or PCR (n=25), while occasional 
imported travel related cases (approximately 1 per year) continue 
to be diagnosed. This is more or less the expected number, 
considering that ECDC and other data sources reported a total of 
only 38 travel-related cases for the whole EU for 2012.

Veterinary surveys in Belgian dogs, cattle and 
wild boar
In the three studies by Roelandt and others [62-64], a 
commercially available enzyme-linked immunosorbent assay 

Medical Surveillance QAMH IPH ITM
Year Sampled 2000-2009 2009-2014 2014-2016

Sampling Hospitals Lyme
Referral Hospital Hospitals

Strategy Passive (catchment area) Passive/Enhanced
(catchment area)

Passive
(catchment area)

Criteria Humans Tick bite Lyme or TBE suspected 
Clinical CNS

Lyme or TBE suspected
Clinical CNS + Lyme tests negative

Lyme or TBE suspected
Clinical CNS

Sample Size n=359 n=113 n=40
Detection Limit 95% confidence ≥0.85% ≥2.50% ≥7.50%

Table 1 Summary of sampling strategies in Belgian medical surveys. Strategy, sample sizes, selection criteria and potential TBEV-seroprevalence 
detection limits if TBEV is present.
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(Immunozym FSME/TBE IgG All Species-ELISA®, Progen 
Biotechnik GmbH, Heidelberg, Germany) was used for first-line 
detection of TBEV-specific IgG-antibodies. This non-competitive 
indirect assay uses horseradish peroxidase–Protein G conjugate 
to detect IgG against whole TBE-virus. Using standard curves, 
sample concentrations were read in Vienna Units per ml (VIEU/
ml). Sera with <53 VIEU/ml were negative, sera with >126 VIEU/
ml were positive and those between 53 VIEU/ml and 126 VIEU/
ml were classified borderline (Table 2). 

The seroneutralisation test TBEV-SNT is the gold standard for 
TBEV diagnosis [65] and was always used following the “rapid 
fluorescent focus inhibition test” protocol: RFFIT in microtiter 
plates using Vienna units per ml (VIEU/ml) [57]. SNT test panels 
are necessary in order to distinguish the cross-reacting flaviviral 
antibodies (other SNT tests), so that one can estimate true TBEV-
seroprevalence in each species and can evaluate veterinary ELISA 
screening accuracy. The latter can be performed with accepted 
gold standard evaluation techniques, including two-by-two 
table parameters and ROC-curves [66]. As much as possible, 
the relevant combinations of species serum+flavivirus exposure 
control samples (positive/negative) were used for each test [47].

In the Belgian canine study, serum samples of Belgian dogs were 
obtained from three diagnostic laboratories from Northern 
(n=688) and Southern Belgium (n=192). Since the true diagnostic 
sensitivity and specificity of the ELISA kit were unknown for 
dogs, we lowered the cut-off by 15% compared to the kit cut-off 
(>53 → >45 VIEU/ml). ELISA-positive (>126 VIEU/ml), borderline 
(>53 VIEU/ml) and near-borderline (>45 VIEU/ml) samples 
were subjected to TBEV-SNT. One dog was confirmed TBEV 
seropositive. Several ELISA-positive and (near)borderline sera 
underwent seroneutralisation and hemagglutinin inhibition tests 
to rule out West Nile and Louping Ill viruses, but tested negative. 
The clinical history of the seropositive dog could not explain 
beyond doubt where and when TBEV infection was acquired [62]. 

In the Belgian cattle study a targeted, risk-based subselection (age 
>2 years, pasture access, Eastern provinces) of a cross-sectional 
sampling design was used to perform serological screening on 
Belgian cattle (n=650), selected from the 2010 Belgian national 
cattle winterscreening surveillance serum bank. All samples 
were subjected to the gold standard TBEV Seroneutralisation 

Test (SNT). Seventeen bovines were seropositive (titer>1/15) 
and six had borderline results (1/10<titer<1/15). The accuracy of 
the SNT was confirmed in a mouse inoculation test. The overall 
bovine TBEV-seroprevalence in the targeted area was estimated 
between 2.61 and 4.29%. This confirms the presence of infected 
foci in Belgium for the first time. Further surveillance in cattle, 
other sentinels, ticks and humans at risk is recommended to 
further determine the location and size of endemic foci and the 
risk for public health [63].

In the Flemish wild boar study, TBEV serological screening was 
performed on sera from (Sus scrofa; n=238), within the frame 
of a Flemish wildlife surveillance. These sera were collected 
in 2013 throughout the whole Flemish wild boar population 
range (northern Belgium) by hunters and vets. All samples were 
subjected to gold standard TBEV seroneutralisation (SNT). Seven 
wild boars were seropositive and showed moderate to high 
SNT-titers-three had borderline results. Seroprevalence was 
estimated around 4.20% (95% CI: 1.65-6.75%). Other Flaviviridae 
(Classical Swine Fever, West Nile Fever, Louping Ill viruses) were 
ruled out and thirteen available tonsils tested negative in TBEV 
RT-PCR [47,64].

In Walloon roe deer study [67], 498 hunted roe deer (Capreolus 
capreolus) sera were collected in Wallonia (southern Belgium) 
between 2007 and 2009, through an active surveillance program 
[68]. The animals originated from 28 forest districts uniformly 
distributed in the four provinces of southern Belgium (no map 
available). The sera were tested using the Immunozym FSME TBE 
IgG All Species ELISA (Progen Biotechnik) and 62 sera (12.4%) 
were ELISA-positive. Five highly ELISA-reactive sera were analyzed 
further in SNT and two displayed a significant SNT-titretiter (1:20 
and 1:160). The two SNT-positive roe deer were sampled in 
2008 and 2009 and originated from two different forest districts. 
Larger-scale screenings are being carried out by the University of 
Liège to evaluate the potential TBE risk areas in this region [67].

In the Flemish roe deer study [69], hunted roe deer sera were 
collected in Flanders (northern Belgium) between 2008 and 
2013. A total of n=98 samples were examined for specific TBEV 
IgG antibodies using RFFIT-SNT. An antibody prevalence of 4.90% 
was found (95% CI: 1.61-11.70%) and the two TBEV-seropositive 
samples presented with relatively low titers (1/16). These 

Sentinel Animals Dogs
Belgium

Cattle
Belgium

Wild boar
Flanders

Roe Deer
Wallonia

Roe Deer
Flanders

Year Sampled 2008 2010 2013 2007-2009 2007-2013

Sampling Laboratories
2 FL+1 W

Winterscreening  Cross-
sectional

FL range: LIM+ANT-WFL 
Disease Surveillance

W range: Surveillance 
Network

FL range:   Volunteer  
Network

Strategy Convenience
(Catchment)

Risk ~ Lyme/TBEV      4 
Provinces East BE

Convenience   (Hunters–
Vets) Convenience (Hunters) Convenience (Hunters)

Criteria Animals None ≥2 years old      (pasture 
access)

Representative of 
population and range Shot Shot or found dead

Sample Size n=880 dogs from 
293 communities

n=650 cattle from 44 
herds/communities

n=238 wild boar from 14 
communities

n=498 from
28 forest districts n=98 from 7 hunting areas

Detection Limit 
95% confidence ≥0.35% ≥0.55% ≥1.25% ≥0.60% ≥3.00%

Table 2 Summary of sampling strategies in Belgian veterinary sentinel strategies. Strategy, sample sizes, selection criteria and potential TBEV-
seroprevalence detection limits if TBEV is present.
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results resembled those of other European studies and would 
suggest potential presence of TBEV in Flemish roe deer. It was 
concluded that roe deer, being omnipresent and increasing in 
abundance, offer good possibilities for comparative European 
sero-surveillance of several ruminant and zoonotic, including 
TBEV [69].

Results and Discussion
Sampling strategies and detection limits
Tables 1 and 2 summarize and compare the sampling strategies 
and detection limits to be expected from the given sample size. 
Passive studies, such as the medical ones in this case, often lack the 
sensitivity to detect rare and emerging diseases [70]. Passive and 
convenience active sampling are per definition opportunistic and 
quite cost-effective, but the results are not always representative 
of larger general populations, due to potential selection bias [71]. 
Risk-based targeted sampling equally does not allow study results 
to be extrapolated to non/low-risk areas but gives the worst case 
scenario and increases probability to detect an emerging disease 
early, i.e. even at very low prevalence. On the other hand, a 
fully randomized national sampling for an emerging disease in 
a very low prevalence situation (such as Belgium) may be cost-
prohibitive due to unrealistically high sample sizes that would be 
required.

As follows from general epidemiological theory and for any 
sampling strategy (even convenience), a larger the sample size 
will result in a lower the detection limit (Table 2) and a higher 
precision in the estimates (Table 3). As such, especially the 
current human passive surveillance (ITM: n=40) and Flemish 
roe deer sample (n=98) theoretically needed a relatively higher 
presence of >3-5% for emerging TBEV to be detectable in the 
respective Belgian populations. A 100% negative survey may 
indicate true absence or a hidden presence below the detection 
limit [72]. The detection limits were thus generally lower for 
the larger animal studies and in the face of a higher expected 

exposure lower on the iceberg: this is a win-win situation with 
more potential precision in the seroprevalence estimates.

Prevalence and freedom estimates
Prevalence and freedom calculations were performed similarly 
for all Belgian studies and are summarized in Table 3. Confidence 
intervals (95% Wald if n>100 or Agresti-Coul if n<100) were 
calculated on the results and the probabilities of freedom 
(Prevalence=0.00%) were calculated in EpiTools (Survey Toolbox® 
AusVet1.04 and http://epitools.ausvet.com.au) [73] and 
WinEpiscope®2.0 [74], according to the Cameron and Baldock 
probability formulae [73,75], with a range of design prevalences 
(cattle: 0.1-50%; wild boar: 0.1-10%; dogs: 0.1-1%; humans: 0.1-
35%; Roe deer 0.1-15%) and with the conservative or progressive 
(SNT-borderline samples as negatives or positives) number 
of TBE-reactors when applicable. In all species, the observed 
number of positive reactors (IgG and/or SNT) was always too high 
to substantiate freedom of TBEV for the targeted population/
geographical area (p-values <0.05), at the diverse retrospective 
design prevalences.

At first sight, the studies seem to contradict each other (TBEV 
Freedom: yes/no?). However, those that seem to indicate 
“Freedom” (Yes) seem to suffer from a low sample size and 
high detection limit (ITM), or from incomplete/no verification of 
test results with SNT. These studies are not able to distinguish 
between a truly free population and a population with prevalence 
below the detection limit. On the other hand, the IPH human 
study cannot be considered a real “No freedom” either, as the 
SNT and ELISA results was always conflicting in individual patients 
and relevant patient history was incomplete.

Veterinary ELISA evaluation against gold 
standard SNT 
In Dogs, several false positive samples were observed in ELISA 
(~1%). It was also clear that the canine cut-off of this ELISA kit 

Species Sample Size ELISA+ SNTpos%+SNTNI%
Belgium Free of TBE ~SNT/

ELISA? Original Study, Year

Human n=359 IgG: 15.32% IgM: 5.29% - No, and Prev <10-15%   
(Pdisease: <0.0001) QAMH, pers. comm., 2015

Human n=113 IgG: 24.78% IgM: 0.88% 8.12%+0.90% Prev: 9.02%  
(3.61-14.09%)

No, and Prev <8-35% (Pdisease: 
<0.0001) IPH, pers. comm., 2015

Human n=40 IgG: 0.00%   IgM: 0.00% 0.00%+0.00% Prev: 0.00% Yes, or Prev <7%    (Pdisease: 
0.0547) ITM, pers. comm., 2016

Dog n=880 IgG: 1.13% 0.11%+0.00% Prev: 0.11% 
(0.0-0.3%)

Yes, or Prev <0.55%       
(Pdisease: 0.0842) Roelandt et al., 2011

Roe Deer n=498 IgG: 12.4%° 0.4%+0.00% Prev: 0.4% (0.00 
-0.95%)*

Yes, or Prev <1.25-15%       
(Pdisease: 1.000) Linden et al., 2012

Cattle n=650 IgG: 3.85% 2.61%+0.92%    Prev: 3.45%  
(2.12-4.96%)

No, and Prev <3.5%  (Pdisease 
<0.05) Roelandt et al., 2014

Roe Deer n=98 - 5.1%+0.00% Prev: 5.1% (2.20-
11.39%)

No, and Prev <7% (Pdisease: 
1.000) Tavernier et al., 2015

Wild Boar n=238 IgG: 5.46% 2.91% (2.56 8.31%) No: Prev ≥2.5%   (Pfree <0.001) Roelandt et al., 2016
SNT: Sero Neutralisation Test (+: Positive result; +/-: Doubtful); ELISA: Enzyme-Linked Immunosorbent Assay; n: Sample Size; (values): Wald 95% 
Confidence Interval; Prev: Prevalence; *Underestimation as not all ELISA-positives were confirmed/tested in SNT [47]

Table 3 Available TBEV seroprevalence and freedom data in Belgium, anno 2016.
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needs further evaluation, especially to improve sensitivity and 
to avoid false negatives, since the SNT-positive sample was only 
borderline in ELISA, where we used a lower cut-off of 45 VIEU/ml 
(Table 4) [47]. 

In Cattle, the IgG protocol of the Progen ELISA® seemed to have 
an extremely low relative sensitivity DSe in cattle (DSe<20%), 
combined with a fairly reasonable relative specificity (DSp 
≥90%), both compared to SNT at sensitive (1/10 DIL50) or specific 
(1/15 DIL50) serial dilution thresholds. The precision, predictive 
values, Cohen’s kappa and Youden index also followed similar 
trends, indicating an overall low capacity of this test/protocol to 
distinguish and correctly classify TBEV seropositive and negative 
cattle. When inspecting the cattle ROC-curves (area under the 
curve: AUC=54-55%), it was felt that no great improvement 
could be made to this particular protocol by changing the cut-
off in this species. A traditionally calculated cut-off based on the 
negative sample population (c=µneg+2*SDneg with µ=mean and 
SD=standard deviation) would still have led to a large amount of 
miss-classification [47]. 

In Wild Boar, using the manufacturer’s cut-offs and an alternately 
positive or negative interpretation of SNT-borderline results, the 
IgG protocol of this ELISA showed low diagnostic sensitivity and 
good diagnostic specificity: DSe min-max: 40-57% and DSp min-
max: 91-92%, with when SNT-borderlines were assumed to be 
true positives (min) or true negatives (max) respectively. ELISA 
agreement (kappa) with the SNT was judged only “slight to fair” 
(0.18-0.22). Currently, the ELISA overall discriminatory ability 
(area under the curve=AUC) was only 59% or 69% in wild boar at 
1/15 or 1/10 SNT thresholds respectively. Additionally, receiver 
operating curve (ROC)-analysis showed that for early detection 
screening purposes with SNT follow-up, the ELISA cut-off might 
be placed as low as 35 Vienna-units: this would result in improved 
DSe (70-71%) at the cost of DSp (64.04-69.74%) [47].

In humans, the IgG All Species-ELISA® kit can theoretically be used 
for TBEV testing in all species, including humans. In humans, this 
ELISA has a reported diagnostic sensitivity of 97% and analytical 
specificity of 99% for IgG [76]. Considering the SNT as a gold 
standard, IgG was not as accurate as predicted by the firm, with 
a DSe of around 90% and a DSp of around 82%. 

In all datasets, we should bear in mind that due to the relatively 
small “positive” sample sizes available, the ELISA DSe estimates 
are not very precise and may not even be completely accurate, by 
chance. Whereas in animals the (sometimes extremely) low DSe 
seemed to be the major problem, in humans DSp was relatively 
lower, indicating relatively more false positives in the IgG All 
Species ELISA. The flaviviral cross-reactions interfering with 
ELISA-DSp are well known from the literature, are also present in 
haemagglutination inhibition testing (HIT), and can be resolved 
by confirmation testing with batteries of SNT and IFAT-tests. The 
causes for the unsatisfactory veterinary DSe results [47], on the 
other hand, are largely unknown as this problem has not been 
described yet. 

What is clear for TBEV is that veterinary ELISA’s have not 
been validated in large published European field studies or 
proficiency tests except the study from Reed and Muench [77]. 
Manufacturer’s studies remain unpublished and do not seem 
to have included sufficient numbers of (low/high) seropositive/
negative control samples from low prevalence areas, such as the 
Low Countries. As a result, the kit-protocols may actually not be 
fit for this new particular screening purpose/area (Table 4) [78].

Alternatively, there may be E-protein mutations present changing 
the antigenicity of the local Belgian TBE-virus, which has not 
been found, characterized yet. The hosts (animals) may also be 
the cause, through short antibody longevity (months rather than 
years?) or through bad serum quality, or they may undergo a 
very/too low TBEV-exposure from a (very) low tick-prevalence 
environment [47].

Diagnostic Test Accuracy of the Progen All-species IgG-ELISA
Species Total Sample SNT DIL50 Threshold ELISA   Parameter Results Sample Size   Used for Calculation

Humans
(n=113) ≥1/15

DSe 0.90 (0.55-1.00) n=10
DSp 0.82 (0.74-0.89) n=101

Dogs
n=880 ≥1/5

DSe 1.00 (2.50-1.00) n=1
DSp 0.99 (0.98–1.00) n=879

Cattle
(n=650)

- DSe Min: 0.13 (0.00-0.27)
Max: 0.17 (0.00-0.21) n=18-23

Min: ≥1/15
Max: ≥1/10 DSp Min: 0.89 (0.87-0.92)

Max: 0.97 (0.96-0.98) n=627

- AUC ROC Min: 0.5489 (0.51-0.59)
Max: 0.5535 (0.51-0.59) n=650

Wild Boar
(n=238)

- DSe Min: 0.40 (0.12-0.74)
Max: 0.57 (0.18-0.90) n=7-10

Min: ≥1/15
Max: ≥1/10 DSp Min: 0.91 (0.86-0.94)

Max: 0.92 (0.88-0.95) n=228

- AUC ROC Min: 0.60 (0.33-0.87)
Max: 0.69 (0.37–1.00) n=238

Table 4 Diagnostic Test Accuracy of the Progen All-species IgG-ELISA. Adapted from (Roelandt, 2016) ELISA accuracy parameters as compared to 
TBEV Seroneutralisation Test (SNT) as gold standard test. DIL50: 50% endpoint titer cut-off: Titer causing 50% reduction in fluorescent foci [78]. DSe/
DSp: Relative diagnostic sensitivity or specificity; AUC ROC: Area under the receiver operating curve; Min: With borderline SNT as true positives; Max: 
With borderline SNT as true negatives.
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Confirmation testing and validation
In the human-based studies, flaviviral confirmation testing was 
not performed, despite the fact that–considering Spatio-temporal 
tick exposure, travel and vaccination history-cross-reactions are 
possible between Tick-Borne Encephalitis Virus (TBEV)/West Nile 
Virus (WNV)/Japanese Encephalitis Virus (JEV)/Yellow Fever Virus 
(YFV)/Dengue Viruses (DENV1-4) and very few false positives are 
to be expected in TBEV-SNT [61,79-81]. This is currently a major 
gap in the medical diagnosis of aseptic meningitis, for which up 
to 75% of cases remain etiologically undiagnosed, even in 2016 
[51,82-85].

The veterinary studies on dogs, cattle and wild boar documented 
some of the very common flaviviral cross-reactions in first/second 
line testing. One of the dogs reacted more strongly to Louping 
Ill virus haemagglutination inhibition testing (LIV-HIT) than to 
TBEV-SNT, and some of the wild boar showed a relatively lower 
reaction in LIV-HIT and/or high reaction in Usutu Virus (USUV) and 
West Nile Virus (WNV)-SNT (Table 5). In flaviviral research, cross-
reactions in ELISA kits are so common that we might hypothesize 
that almost “any” veterinary flaviviral ELISA kit could potentially 
be used as a screening test for TBEV-exposure, e.g. a WNV kit in 
horses 21. In the veterinary studies on roe deer, cross-reactions 
were not ruled out [67], or no comparison was performed [69].

Despite being an absolute necessity for robust results, SNT-
confirmation testing against other possibly cross-reacting 
flaviviruses is not always straightforward. The selected SNT for 
a combination of species and flavivirus is not always readily 
available in Belgium/Europe (e.g. LIV/USUV) or not validated 
for the species under study so that quality of the assays could 
not be guaranteed (e.g. WNV in wild boar). For the confirmation 
testing we preferably selected genetically related (LIV) and 
geographically relevant viruses (USUV, WNV, LIV).

However, our sample panels came from non-target species 
for each respective test, e.g. wild boar, dog and cattle versus 
birds, horses, or small ruminants. Hence, control sera of the 
correct species-flavivirus combinations were often not available. 
Moreover, the SNT is a delicate test and poor quality samples 
necessitated kaolin sample treatments for the wild boar and 
cattle sera besides the usual pre-heating and treatment of stable 
cell cultures with antibiotics.

Occasionally, we had to opt for “second choice” confirmation 
tests such as ELISA, HIT or IFAT [47]. Nonetheless, despite the 
potential cross-reactions, in medical diagnosis HIT and IFA are 

generally known as reasonably sensitive tests [86], that may 
also be specific in skilled hands through repetition and titer 
comparisons [87], and that may agree well with SNT [61].

In the wild boar study, we had the opportunity to test the 
Euroimmun flaviviral IFAT-biochips (www.euroimmun.ch) for 
medical differential diagnostics (TBEV/WNV/JEV/YFV/DENV1-
4 [61], after recalibration with specific primary/secondary 
conjugates and with porcine TBEV control samples obtained from 
the Friedrich Loeffler Institute (FLI). This IFAT confirmed only the 
three strongly SNT-positive/ELISA-positive wild boar and thus 
currently seems to be a less sensitive test than TBEV-SNT in wild 
boar [47].

General Discussion
Experiences with sentinel species surveys
The Belgian medical community so far has delivered almost no 
evidence for TBEV-presence or TBE-cases in Belgium throughout 
the last 16 years, despite a considerable amount of positive 
(but contradicting) serology test results, and despite the correct 
diagnosis of several imported cases with accredited tests 
following best laboratory practices. So, unless passive medical 
surveillance is more enhanced in neurological referral centers 
through creating awareness in the medical community and with 
projects, and unless active surveillance is added in occupationally 
at risk groups (e.g. military, foresters), humans remain bad 
sentinels at the very tip of the iceberg. Medical data is certainly 
not sufficient to evaluate whole areas and regions for endemicity 
and case reporting is considered unreliable and incomplete (only 
the tip of the iceberg) at the best of times 4 [8,37,38,45,52].

As opposed to this, all five Belgian veterinary studies have been 
able to suspect (dogs) or indirectly confirm (cattle, wild boar, 
roe deer) TBE-viral presence in Belgium. However, which is the 
best species to continue Belgian TBEV sentinel surveillance? 
The “ideal” Sentinel species for TBEV sentinel surveillance has 
been described as having an adequately limited home range in 
comparison to TBE focus size, which is often a few m2 up to 1 
km2. It should be available in large numbers; it should be well 
dispersed in the surveillance area, and should show a long-lasting 
detectable response after natural infection [88-90]. Additionally 
and importantly, one may add that TBEV (sero) prevalence should 
show a good spatial correlation with human TBE incidence/risk, 
and that sufficiently frequent tick exposure/infestation is clearly 
advantageous [46].

Sentinel
Animals

Dogs
Belgium

Cattle
Belgium

Wild boar
Flanders

Confirmation
Panel

10/10 reactors from TBEV-ELISA
(>53/126 VIEU/ml)+5 negatives 23/23 reactors from TBEV-SNT   

(1/11-1/30)+10 negatives
7/10 reactors from TBEV-SNT

(1/11-1/243)+3 negatives

Confirmation
Tests/Results

TBEV-SNT: 1 pos (1/5)
LIV-HIT: 1 pos (1/160)
WNV-SNT: All negative

Rabies-SNT: All neg.
WNV-ELISA/-SNT:
All negative (1 NI)

Mice are protected

SNT: USUV-WNV-CSFV+ELISA: CSFV/HIT: LIV+IFA:YF-DEN-
JE-WN-TBE:

Most negative or lower titers+IFA confirmed TBEV-SNT++
+1 strong reaction USUV/WNV

Table 5 Flaviviral confirmation testing in 3 of the veterinary studies. As compared to TBEV-SNT as gold standard. DSe/DSp: Diagnostic Sensitivity or 
Specificity; Min: With borderline SNT as true positives; Max: With borderline SNT as true negatives.
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Considering the results of the Belgian surveys, a number of 
additional practical and epidemiological surveillance suitability 
criteria may equally be taken into account to set up effective 
sentinel surveillance (Table 6). Some of these issues may 
severely limit certain aspects of the study/surveillance, such as 
the accuracy and confirmation testing (blood volume/quality, 
test availability), statistical power, detection limit, precision of 
freedom/prevalence calculations (sample size) and the potential 
to proceed to modelling/mapping exercises by obtaining 
sufficient “case” data: e.g. numbers of tick bites, sentinel TBEV-
seropositive, TBE cases or TBEV infected ticks [47].

After evaluation of these surveillance suitability criteria for the 
veterinary sentinels used in Belgium (Appendix B: Veterinary 
Sentinel Evaluation Tables), it seemed to us that [47]:

1.	 Dogs are most suited for passive clinical surveillance or local 
risk-based sero-surveillance at community scale.

2.	 Cattle are most suited for national randomized sero-
surveillance at regional/national scale and for studying 
localized foodborne TBE point outbreaks.

3.	 Wild boar is most suited for local risk-based targeted sero-
surveillance at community scale within their range of presence 
(Wallonia and parts of Flanders: locally representative).

4.	 Roe deer are suited for both national randomized sero-
surveillance (range and density is sufficient throughout 
Belgium UTM squares) as well as for local risk-based targeted 
sero-surveillance at community scale. 

5.	 None of these hosts are particularly suited for finding the 
actual virus: for this purpose, rodents and ticks are better 
study subjects.

6.	 For mapping and modelling exercises, wild boar, roe deer and 
cattle seem to be the most promising sentinels to provide 
enough case data in Belgium. This purpose can potentially be 
extended to all large tick amplifier mammals.

In the end, we did not identify one single best sentinel species, 
and concluded that the choice of species depends strongly on 
the purpose of the survey (e.g. broad screening versus in depth 
investigations, medical risk, and spatial area description) and on 
the local epidemiological situation: which hosts are present at 

which stage of the iceberg? The authors also believe that the 
local eco-epidemiological situation explains most of the current 
contradictions in “best sentinel discussions” (e.g. wild boar vs. 
roe deer) and in the available European risk factor/predictive 
modelling studies. Many more species have been used on 
occasion to study TBEV presence or seropositivity (Appendix A: 
Overview Sentinel Studies) and horses (clinical or active), small 
ruminants (sheep–goats: National, local or foodborne studies), 
and other wildlife species such as foxes (e.g. urban settings or 
Northern Europe) may be better sentinels instead of dogs, cattle 
and boar/deer under some circumstances.

Experiences with diagnostic tests
Despite good international proficiency test results for SNT in the 
medical setting, it remains an annoying finding that interpretation 
of IgM/IgG and gold standard SNT serology [65] did so far never 
provide a conclusive TBE-diagnosis, as it should have based on 
the data. The contradictions between the IgG-ELISA, HIT and SNT 
should not even occur more generally [59,76]. Additionally, a 
final diagnosis should not only be dependent on IgM positivity, 
as IgM detects only acute infections (Figure 2), i.e., up to 7 weeks 
or at the most a few months [65] and IgM-seroconversion may 
not even develop in some patients [59].

Paired sera that demonstrate a 4-fold increase in IgG ELISA titers, 
the use of very specific TBEV-SNT (considered ±100%), and a 
complete travel, tick-bite, vaccination history should be sufficient 
to solve these interpretation problems in future medical studies. 
Additional SNT or IFA testing should rule out other flaviviruses if 
one is still not convinced.

With the veterinary ELISA accuracy results obtained so far, it 
seems ill advised to start using any ELISA as a veterinary screening 
test in a low prevalence area at the fringe of the TBEV geographic 
distribution, at least not before some further international 
validation of these tests in multiple species. In general, it is 
known that measures of accuracy are not fixed indicators of a test 
performance [66,91] and that test accuracy in the field may be 
influenced by many factors, including population characteristics, 
genetic variation in the infectious agent, the sampling, storage 
and test methodologies and the population prevalence [92,93].

The main reason for this is that Belgium and other low prevalence 
countries first have to be able to accurately map their endemic 

Suitability Criteria for TBEV Sentinel Surveillance

Clinical Characteristics
•	 Clinical cases, viraemia and/or lasting antibody response
•	 No flaviviral vaccination or exposure to other flaviviruses than TBEV
•	 Tick exposure, good tick host and lack of preventive actions

Correlation with  Spatial Human Risk
•	 Useful proxy for human risk behaviour, mobility and travel
•	 Spatial presence at national (NUTS 1), regional (NUTS 2), or local (NUTS 3/4) level
•	 Suitable home range (km²) and representative-even distribution in the area

Epidemiological   Parameters
•	 Knowledge of population size, density and sampling frame
•	 Pre-existing surveillance for other pathogens: passive, active or targeted
•	 Sample size sufficient for the surveillance purpose and design prevalence

Practical    Parameters
•	 Organizations/Governments involved and available funding
•	 Serum quality, volume and transport, storage
•	 Available flaviviral diagnostic tests and control samples per spp.-virus combination

Table 6 Table of suitability criteria for TBEV sentinel surveillance. Compiled from Belgian experiences [47] and literature [46,88-90].
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infection

4 - 14 d.
incubation 

period

2 - 5 d.
phase 1

∼1week
interval

∼3week
phase 2

7 weeks post infection1           2          3          4          5          6 

fever

IgM ab IgG ab

Figure 2 Suitable tests for specific TBE diagnosis. According to biphasic course of a TBEV infection with 
symptoms and antibody development; PCR: polymerase chain reaction; VIS: virus isolation; IgM 
ab-IgG ab: Immunoglobulins of class M or G.

risk areas, as opposed to just estimating a true prevalence from 
an apparent ELISA-prevalence to follow relative trends. For this 
risk assessment purpose, an unknown proportion of ELISA-false 
negatives and low sensitivity may constitute a major problem. 
Clearly, this has never been an issue in the core areas of TBE (V) 
endemicity where the ELISA-tests were developed, as there the 
seroprevalence is usually quite high in one or more species and 
clinical cases are much more common in these areas.

Presently, the IFA and SNT are currently the most accurate 
veterinary serological tests for the Belgian situation, both for 
surveillance or diagnostic settings. Even when testing all sera 
with SNT/IFA tests is not sustainable in veterinary field screening, 
it should currently be best practice to test all ELISA-positives and 
-doubtful in SNT/IFA, together with a randomly selected sufficient 
sample of the ELISA-negatives. In the meantime, research projects 
should focus on continued (re-) validation and improvement of 
current ELISA’s e.g. sub-viral particle ELISA [94,95] and should 
(re-)study matrix and species effects on analytical/diagnostic 
sensitivity/specificity, sample preparation/storage protocols, 
etc. The goal would be to obtain a more accurate and better 
characterized screening tool applicable to low prevalence areas 
for surveillance, risk assessment and trend watching purposes.

Advice on future Belgian One Health TBE(V) 
surveillance
Medical surveillance: Belgium has always simply been 
“assumed” to be TBEV-free, though this was based on very 
little scientific evidence [53]. In 2016, despite five veterinary 
sentinel publications between 2010-2016, and despite multiple 
unexplained/inconclusive seropositive human cases, the medical 

world still considers TBEV as a non-endemic virus and of little 
importance to Belgium [96].

However, despite improvements in the diagnosis of viral 
encephalitis since the use of PCR on CSF to try and detect the 
more common viruses [83,97,98], the etiology of up to 75% of 
aseptic/viral encephalitis and meningitis cases remains unknown 
around the world, even in 2016 [51,82-85].

Moreover, TBEV does not feature in the regular diagnostic panel 
for locally acquired medical encephalitis unless there are very 
clear anamnestic indications [83,98,99] and medical surveillance 
has been very passive and limited. The professional awareness 
in regards with prevention of travel related TBE cases is only 
beginning to rise now. For the clinician, it is important to try 
to establish an etiologic diagnosis in all cases of encephalitis/
meningitis, even if there are no specific effective treatments, 
since this may be important for the individual prognosis and 
counseling of patients and family members [100].

The Belgian veterinary sentinel studies [62-64,67,69] the Dutch 
ones [72,101] and the recent discovery of a new TBE-virus in the 
Netherlands on tick samples from September 2015 [101,102] 
as well as the very first Dutch human TBE case [103] should 
now prompt Belgian scientists and clinicians to reconsider this 
situation. Clearly, enhanced medical surveillance and increased 
awareness among medical professionals are now absolute 
priorities for the Low Countries, necessary to minimize and assess 
any potential TBE risk to humans from this uncharacterized strain 
of TBEV and to guide prophylaxis and public health decisions and 
measures.

Additionally, medical surveillance may lead to explanations for 
the apparent mismatch between the veterinary findings and the 
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lack of medical cases. Potential hypotheses to be explored may 
include: suboptimal diagnostic test quality, timing of (paired) 
sampling, insufficient testing by clinicians, lack of awareness, a 
large proportion of asymptomatic or clinically mild exposures, 
and presence of an atypical low-virulent TBEV virus.

TBE should be made notifiable, as in other European member 
states [8,52,59]. Next to a more enhanced passive component, 
it should include an active component to increase the detection 
sensitivity of the overall surveillance system [70,104] and to 
improve usefulness, value and cost-effectiveness of the data 
[105]. As suggested for veterinary surveillance, existing medical 
surveillance schemes and available tick, sera and risk factor 
datasets should be exploited.

Virological surveillance
Due to a low detection probability and the considerable resources 
needed to collect sufficient ticks/samples to obtain confident 
PCR results, scientists are often not activated to conduct such 
surveillance activities in low prevalence TBE areas [106]. TBEV 
does not often cause epidemics, though occasionally one may be 
confronted with a food-borne outbreak with a few dozen cases 
[107,108]. This flavivirus remains mostly submerged in the bulk 
of the iceberg. These sylvatic tick-host cycles are within largely 
unaffected populations of diverse animal species, where TBEV 
causes only short viremias and a vast majority of asymptomatic 
infections.

This makes it very difficult to “catch the virus in action” and the 
international scientific community still rarely succeeds in isolating 
TBEV-strains from known human/veterinary cases, or from hosts 
even in known highly endemic areas. Well characterized and 
fully sequenced TBEV isolates are scarce throughout the entire 
Eurasian endemic zone [109-111]. Some of the characterized 
TBEV strains were isolated from ticks or rodents, and rarely from 
a human case [4,112-115].

However, the TBE RNA-virus is capable of evolution, mutation 
and recombination when passaged in the lab through different 
hosts [110,116,117], in the field throughout the Eurasian 
continent [118,119], and certainly at the biogeographic edges of 
its distribution, where it is subjected to a number of ecological 
constraints [120,121]. In Europe, the closely related Louping Ill 
Virus (LIV), Spanish Sheep Encephalitis Virus (SSEV), Greek Goat 
Encephalitis (GGEV) virus and Turkish Sheep Encephalitis Virus 
(TSEV) [122,123] and the in 2015 characterized Spanish Goat 
Encephalitis Virus (SGEV) virus are present [124].

Very recently (June 2016), a Dutch-Belgian research team 
successfully detected TBEV-viral RNA from an unknown TBEV 
strain [101,102]. This was in two ticks collected in Autumn 2015, 
obtained in a forested area where six roe deer sera from 2010 
were found seropositive. The Dutch isolates were found to 
cluster within the TBEV-species complex, but not within the three 
established TBEV subtypes (W-S-FE) nor within the LIV-cluster, 
implying that it concerns a novel TBEV-subtype [101].

So far, the TBE-virus has not been PCR-amplified or isolated yet 
in Belgium. The study on 13 wild boar tonsils (all negative) was 

the first published attempt [64]. Secondly, during 2014-2015, 
the WIV-ISP has executed a field study in rodents in some of 
the communities where the Belgian TBEV-seropositive cattle 
were found earlier [63]. Nonetheless, so far the Belgian rodents 
have been SNT-negative (n=0/173) and PCR-negative (n=0/308). 
This could be due to a number of factors, such as large rodent 
turnover, so they remain only seropositive for a short time, low 
TBEV tick-prevalence and non-viraemic transmission, or just 
bad luck with the location of the sites, as TBE endemic foci can 
be quite small. The sentinel, reservoir and tick research should 
continue at least until a Belgian TBEV-strain is characterized, as 
this strain may very well be an atypical “Low Countries” strain, as 
found in the Netherlands.

Bringing it together: One health epidemiology
In a globalized world with increasing numbers of emerging 
diseases, an interdisciplinary so-called ”one health” approach 
is indispensable for the prevention and control of vector-
borne zoonoses, such as TBE [125]. This approach leads to 
better preparedness and contingency planning, more effective 
surveillance and targeted control systems, increased health 
equity and improved sharing of logistics and costs [126-128].

The presently available veterinary Belgian scientific studies have 
allowed us to conclude that TBEV is indeed present in Belgium, 
despite an apparent lack of medical TBE cases and despite 
previous predictions against emergence. These five humble 
sentinel studies (often conducted with very limited resources) 
have at long last made Belgium join the “peloton” of TBE-endemic 
European countries trying to make sense out of (emerging) 
TBE(V) eco-epidemiology. The additional (and exciting) Dutch 
revelations, including the first virus and case detections in 2015-
2016 [101-103,129] make us even more confident that the 
investigations are moving in the right direction.

The (lack of) medical data leaves us somewhat puzzled for 
now… However, an immediate increase in medical awareness 
and sustained virological research are now justified for the Low 
Countries (e.g. Belgium-Netherlands-Luxemburg). This research 
will be needed to proceed confidently into the “endemic era” by:

1.	 Catching and characterizing the Belgian TBEV-strain: is 
it the “Low Countries” strain of the Netherlands or yet 
something else?

2.	 Diagnosing and describing the nature of the first Belgian 
human TBE cases: have they just been missed by the 
medics up till now, or are they mostly benign and 
asymptomatic?

3.	 Supplying necessary data for the competent governments 
to perform individual and public health risk assessments: 
is the risk low-medium-high and is there a difference 
between the general population and professionally at risk 
groups?

4.	 Supply sufficient case data to allow statistical risk 
prediction modeling [130,131] and spatial mapping: 
where is TBEV (risk) emerging and what are the driving 
risk factors in the Low Countries? 



ARCHIVOS DE MEDICINA
ISSN 1698-9465

2017
Vol. 1 No. 1: 4

11© Under License of Creative Commons Attribution 3.0 License

Journal of Zoonotic Diseases and Public Health

Spatial mapping and predictive modeling are risk-based methods 
that have been used particularly in vector-borne diseases to 
identify the areas and time periods in which surveillance is 
more likely to successfully detect emerging health threats at 
an early stage. Such techniques greatly benefit governments 
and public health agencies to target resources, research and 
control measures; have been performed in many other endemic 
countries or multiple country meta-analysis exercises [132-193].

Conclusion
This comparative review paper described five Belgian 
veterinary serological studies (ELISA/SNT/IFAT/HIT) in which 
several surveillance schemes were used (active/passive, risk-/
laboratory-/range-based) in classic TBE sentinel species (dogs, 
cattle, roe deer, wild boar). Additionally, passive syndromic 
surveillance in two medical laboratories resulted in inconclusive 
medical data. Details were given on the scientists’ experiences 

with available first/second line diagnostic tests and with the 
different surveillance methods/survey designs.

Each of the veterinary studies clearly demonstrated the presence 
of TBEV-specific antibodies in Belgian sentinels, sometimes 
even at high SNT titers, while the medical data remain so far 
inconclusive, despite positive reactions of some patients in 
some TBEV-tests. These results have substantiated our suspicion 
of TBEV-presence in Belgium from 2010 onwards and have 
allowed sentinel comparisons based on “suitability criteria”. 
Furthermore, the studies have highlighted the need for further 
veterinary validation of commercial ELISA-tests in comparison to 
the gold standard SNT.

We have been able to suggest an integrated future TBEV one 
health surveillance program for Belgium, combining several 
components at different levels of the TBEV zoonotic iceberg. This 
should lead to sufficient data collection for predictive modelling 
and spatial risk mapping in future studies.
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