Available online at <u>www.pelagiaresearchlibrary.com</u>

Pelagia Research Library

Der Chemica Sinica, 2011, 2(6):273-280

Comparative Acoustic Studies of Some Thiosemicarbazide and Thiaoxadizine at Different Composition

M. S. Wagh^{a*}, S. S. Kharkale^a, P. S. Agrawal^a and L. J. Paliwal^b

^aDr. I. N. Nimdeokar P. G. & Research Centre for Chemistry, Hislop College, Nagpur, (M.S), India ^bDepartment of Chemistry R.T.M. Nagpur University, Mahatma Jyotiba Phule Educational Campus, Nagpur(M.S), India

ABSTRACT

The experimental data of ultrasonic velocity, density, viscosity has been obtained for some thiosemicarbazide and thiaoxadizenes at different temperature in 70% and 75% DMF over the conc. range of (0.002 to 0.01) mol Kg⁻¹. The derived parameters such as apparent molar volume of solute (Φv), limiting apparent molar volume of solute ($\Phi^0 v$), limiting apparent molar volume of solute ($\Phi^0 v$), limiting apparent molar coefficient (α^*) and Jones-Dole viscosity coefficient were obtained using the density and viscosity results. The variations of these properties with concentration give the information about solute-solvent interactions.

Keywords: Density, Relative Viscosity, Apparent Molar Volume, Limiting Apparent Molar Volume, Molar Expansivity.

INTRODUCTION

In recent years, the measurement of ultrasonic velocity has been adequately employed in understanding the nature of molecular interactions in pure liquids and liquid mixtures. The ultrasonic velocity measurements are highly sensitive to molecular interaction and can be used to provide qualitative information about the physical nature and strength of molecular interaction in the liquid mixture [1-3] and in pure liquids [4-8]. The variation of ultrasonic velocity and related parameters throw light on the structural changes associated with the liquid mixture having weakly interacting components [9-10] as well as strongly interacting components. The interaction of drugs is of significant importance. Over many years studies of thermodynamic and

transport properties of model compounds such as alkali halides, tetra alkyl ammonium halides, hydrocarbons, alcohols and amines have witnessed the importance of solute-solvent interactions [11-16]. Therefore, it was thought worthwhile to undertake thermodynamic and acoustic studies of the compounds viz., $1-\gamma$ -picolinoyl-4-phenyl thiosemicarbazide(C1), $1-\gamma$ -picolinoyl-4-m-tolyl thiosemicarbazide(C2), 3-(pyrid-4yl)-5H-6-m-tolyl imino-1,2,4,5-thiaoxadiazine(R1),3-(pyrid-4yl)-5H-6-O-tolylimino-1,2,4,5-thiaoxadiazine(R2) in 70% and 75% DMF media. We report here in this communication densities, Relative Viscosities of (C1+70%DMF), (C2+70%DMF), (R1+70%DMF), (R2+70%DMF), (C1+75%DMF), (C2+75%DMF), (R1+75%DMF), (R2+75%DMF) at T= (283,288,293,298 and 303) K over the concentration range, (0.002 to 0.01) mol Kg⁻¹. From density measurements, the apparent molar volume (Φ v), limiting apparent molar volume of solute ($\Phi^0 v$), limiting apparent molar expansivity ($\Phi^0 E$) thermal expansion coefficient (α^{*}) and the temperature coefficient of apparent molar thermal expansivity $(d^2 \Phi^0 v/dT^2)$ have been computed and using density and viscosity data, the Jones-Dole equation viscosity A, B coefficients have been obtained. The results of all these parameters are presented and discussed below. Literature survey on ultrasound velocity measurements shows that very little work has been carried out for thiosemicarbazides and thiaoxadizines. Thus, in the present paper we have used this technique for better understanding of molecular interactions in these compounds, since the compounds pursue biological importance.

MATERIALS AND METHODS

The solutes used in the present investigation were synthesized by standard methods as reported by the earlier workers [17]. They are $1-\gamma$ -picolinoyl-4-phenyl thiosemicarbazide(C1), $1-\gamma$ picolinoyl-4-m-tolyl thiosemicarbazide(C2), 3-(pyrid-4yl)-5H-6-m-tolyl imino-1,2,4,5thiaoxadiazine(R1) and 3-(pyrid-4yl)-5H-6-O-tolylimino-1,2,4,5-thiaoxadiazine(R2). The above compounds were dried in a vacuum oven and then stored in desiccators under vacuum over fused calcium chloride before use. Afterwards, they were used without any further purification. All the solutions were freshly prepared in double distilled DMF on a molality basis. Densities, viscosities, and velocities were measured at 283 K, 288 K, 293 K, 298 K and 303 K. Temperature of the experimental water bath was maintained constant up to $\pm 0.01^{\circ}$ C by circulating the coolant liquid from the LTB-10.

The densities of the solutions were measured at different temperature by the hydrostatic plunger method. A monopan balance of least count 0.0001g was used to record change in plunger weight dipped in solutions.

The viscosities of the solutions were measured by using the Ostwald Viscometer. The viscometer was suspended in an experimental bath having a glass window to observe the meniscus of the liquid. To determine the flow time of DMF, the viscometer was cleaned thoroughly with double distilled DMF, dried and then filled with a fixed amount of 70% and 75% DMF and mounted inside the thermostat vertically. It was kept in an experimental bath for (15 to 20) min to acquire the thermal equilibrium. The liquid was then allowed to flow down through the capillary. The stop watch was started as soon the liquid meniscus touched the upper fiducial mark, the stop-watch having an uncertainty of ± 0.1 s was used to measure the flow for given solution, the viscometer was rinsed with given solution and same amount of the solution was introduced in the viscometer and flow time was measured between same two marks on the capillary. On average,

three readings were taken. Ultrasonic velocity measurements were made by variable path single crystal interferometer (Mittal Enterprises, Model F – 81S) at 2 MHz with accuracy of \pm 0.03%.

RESULTS AND DISCUSSION

Table 1:Free Length(Lf),relative association(Ra) and Apparent molar volume(φv) of 3-(pyrid-4yl)-5H-6-m-tolyl imino-1,2,4,5-thiaoxadiazine(R1),3-(pyrid-4yl)-5H-6-O-tolylimino-1,2,4,5-thiaoxadiazine(R2)

70%DMF								
T=283 K	I <u> </u>	R1		<u> </u>	R2			
m/(mol.Kg ⁻¹)	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$		
0.002	1.09598	0.96777	83912	0.89418	0.95944	-84282		
0.004	1.09662	0.98159	41829	0.90105	0.96438	-90807		
0.006	1.09824	0.98519	32520	0.93780	0.97785	-92179		
0.008	1.09928	0.98783	25654	1.02633	1.00805	-93062		
0.01	1.10084	0.98876	24285	1.07497	1.02487	-95837		
T=288 K		R1			R2			
m/(mol.Kg ⁻¹)	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$		
0.002	1.09824	0.98951	17228	1.09564	1.02724	-101974		
0.004	1.09941	0.98992	17018	1.09892	1.02847	-102532		
0.006	1.11251	0.99392	16760	1.10235	1.02963	-102810		
0.008	1.11510	0.99565	13604	1.11257	1.03291	-103089		
0.01	1.11744	0.99739	10222	1.11622	1.02667	-103967		
T=293 K		R1	·ı	<u> </u>	R2			
m/(mol.Kg ⁻¹)	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$		
0.002	1.11006	0.99138	15408	1.13289	1.02866	-113932		
0.004	1.11363	0.99287	13771	1.13310	1.02886	-114385		
0.006	1.12136	0.99542	12817	1.14311	1.03191	-114460		
0.008	1.11280	0.99786	11047	1.15131	1.03494	-116297		
0.01	1.14188	1.00208	10448	1.15188	1.03679	-119788		
T=298 K			· · · · · ·	·····	R2			
m/(mol.Kg ⁻¹)	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$		
0.002	1.11380	0.98597	19344	1.23394	1.05913	-141498		
0.004	1.13571	0.99294	16909	1.24414	1.06267	-143815		
0.006	1.1516	0.99972	7322	1.24661	1.06856	-162600		
0.008	1.15358	1.00102	4135.6	1.25098	1.07904	-192049		
0.01	1.15914	1.01966	-6787.5	1.25745	1.09427	-240204		
T=303 K	<u> </u>				R2	4		
m/(mol.Kg ⁻¹)	$Lf/(A^0)$	RA	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$		
0.002	1.13417	1.0208	-120294	1.26166	1.06798	-163261		
0.004	1.14175	1.033	-163327	1.26847	1.07064	-166293		
0.006	1.14606	1.08061	-342521	1.27449	1.0732	-169846		
0.008	1.14802	1.08998	-372927	1.27622	1.07451	-173196		
0.01	1.23178	0.94939	260106	1.21755	1.095199	-389028		
T=283 K		C	1	Т	C2			
m/(mol.Kg ⁻¹) Lf/(A ⁴	⁰) R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$		
0.002	1.0672	26 1.118	291662	0.97344	1.0135	-148265		
0.004	1.064.	57 1.116	-290098	0.97298	1.0128	-147051		
0.006	1.0632	35 1.115	-288830	0.97243	1.0126	-146978		
0.008	1.062	14 1.114	-287685	0.97212	1.0119	-1455580		
0.01	1.060	15 1.11	-282238	0.96772	1.01	-144635		
T=288 K		<u>C</u>	1	0.201.2	C2	1		
		0 P	$\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$	$I f/(\Delta^0)$	$L f/(\Lambda^0)$ D $dv/(m^3 mol^{-1})$			

m/(mol.Kg ⁻¹)	$Lf/(A^{\circ})$	$R_A = \Phi v/(m^3.mol^{-1})$		$Lf/(A^{\circ})$	R _A	$\Phi v/(m^3.mol^{-1})$
0.002	1.12471	1.222	-472120	1.01082	1.0267	-173732
0.004	1.11377	1.216	1.216 -469442		1.0197	-170634
0.006	1.11218	1.215	469338	0.98273	1.0157	-170079
0.008	1.10736	1.164	-393019	0.98200	1.0153	-169627
0.01	1.09721	1.13	-338211	0.97927	1.0141	-168845
T=293 K		C1			C2	
m/(mol.Kg ⁻¹)	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$
0.002	1.14817	1.23	-555263	1.10573	1.054	-199896
0.004	1.14741	1.229	-554349	1.09963	1.0517	-198984

M.S. Wagh et al

.

0.006	1.1465	0 1.228	-552588	1.09892	1.0511	-197639	
0.008	1.1443	3 1.338	-697386	1.08743	1.0466	-195282	
0.01	1.1404	9 1.225	1.225 -551264		1.0428	-194175	
T=298 K		C1			C2		
m/(mol.Kg ⁻¹)	Lf/(A ⁰) R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	
0.002	1.1647	5 1.342	-821873	1.10573	1.054	-199896	
0.004	1.1643	9 1.339	-818715	1.09963	1.0517	-198984	
0.006	1.1630	1 1.333	-811650	1.09892	1.0511	-197639	
0.008	1.1579	9 1.22	-638710	1.08743	1.0466	-195282	
0.01	1.1568	5 1.379	-866751	1.07667	1.0428	-194175	
T=303 K		C1			C2		
m/(mol.Kg ⁻¹)	Lf/(A ⁰) R ₄	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R	$\Phi v/(m^3.mol^{-1})$	
0.002	1.1854	2 2.404	-1000000	1.19483	1.1311	-457791	
0.004	1 1835	6 1.392	-971475	1.15167	1.1112	-438691	
0.006	1.1722	0 1.387	-971060	1.15516	1.1108	-437329	
0.008	1.1715	4 1 385	-969221	1 14306	1.11052	-428481	
0.00	1 1688	5 1 329	-899640	1 13719	1.1002	-419898	
0.01	1.1000	5 1.527	75%DMF	1.13717	1.1000	119090	
т-283 к		R1	7570Divir		R2		
$m/(mol Kg^{-1})$	$Lf/(A^0)$	R.	$\Phi v/(m^3 mol^{-1})$	$Lf/(A^0)$	R.	$\Phi v/(m^3 mol^{-1})$	
0.002	1 1 1 4 0 5	0.92916	227104	1.00298	0.89146	255635.5	
0.002	1 10492	0.92556	232133	1.00290	0.88869	265699.7	
0.004	1.10412	0.92330	236374	0.00028	0.88718	203055.7	
0.000	1.10417	0.92447	230374	0.99920	0.88578	271047.2	
0.008	1.14004	0.93308	243342	0.99882	0.88578	278304.3	
0.01 T_299 V	1.13/12	0.9321 D1	243400	0.99770	P2		
1-200 K	$\mathbf{I} \mathbf{f} / (\mathbf{A}^0)$	D	$\Phi u/(m^3 mol^{-1})$	$\mathbf{I} \mathbf{f} / (\mathbf{A}^0)$	N2	$\Phi u / (m^3 mol^{-1})$	
$\frac{11}{100.\text{Kg}}$	LI/(A)	κ _A	ΨV/(III .III01)	LI/(A)	κ _A	$\frac{\Psi}{100000000000000000000000000000000000$	
0.002	1.13363	0.97703	210740	1.14303	0.93133	202221.8	
0.004	1.14201	0.94699	210749	1.14377	0.93009	205601.2	
0.000	1.14090	0.94390	224030	1.13/10	0.94649	203001.3	
0.008	1.13004	0.94236	233376	1.11004	0.93093	234901.2	
0.01 T_202 K	1.12302	0.93909 D1	237717	1.11009	0.93447 D2	239144.9	
1=295 K	I f/(A 0)	KI D	$\Phi_{xy}/(m^3 m_0 1^{-1})$	$I f/(\Lambda^0)$ R.		$\Phi_{\rm V}/(m^3 m_0 l^{-1})$	
III/(III01.Kg)	LI/(A)	K _A	ΦV/(III .III01)	LI/(A)	K _A	Ψ /(III.III01)	
0.002	1.1/313	0.99341	35039	1.10055	0.99113	50517.2	
0.004	1.17090	0.99042	45788	1.16097	0.98038	50517.3	
0.006	1.10098	0.99442	0.99442 22693		0.98506	52459.5	
0.008	1.166/0	0.99417	23433	1.15266	0.98274	5/338.8	
0.01 T 200 K	1.10358	0.99281	20004	1.15003	0.98016	03894.1	
1=298 K	T £/(A 0)	KI D	Φ	T C/(AO)	R2	D /(3 1-1)	
$m/(mol.Kg^{-})$	$LI/(A^{\circ})$	K _A	$\Psi V/(m^2.mol^2)$	$LI/(A^{\circ})$	K _A	$\Psi V/(m^2.mol^2)$	
0.002	1.1894	1.01401	-44909	1.1/482	1.00905	-40981.3	
0.004	1.18952	1.013/3	-43031	1.1/440	1.00649	-28//6	
0.006	1.18286	1.01068	-37696	1.17367	1.00582	-26550.5	
0.008	1.18141	1.00872	-30003	1.17245	1.00430	-20708.6	
0.01	1.17590	1.00172	-2636	1.17044	1.00228	-13387.1	
T=303 K	T. C/(+ 0)	RI R	љ // 3 т.1.	T C/(+ 0)	K2		
m/(mol.Kg ⁻⁺)	Lt/(A°)	K _A	$\Psi V/(m^2.mol^{-1})$	Lt/(A°)	K _A	$\Psi V/(m^2.mol^{-1})$	
0.002	1.24885	0.95634	245433	1.31297	1.23190	-66/315.7	
0.004	1.24689	0.95538	248019	1.23855	1.19400	-636475.4	
0.006	1.23492	0.95203	249605	1.23078	1.18911	-631096.4	
0.008	1.23423	0.9504	257969	1.22864	1.18651	-626779.1	
0.01	1.2317	0.94939	260106	1.21755	1.09519	-389028.5	

75%DMF									
T=283 K		C1		C2					
m/(mol.Kg ⁻¹)	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$			
0.002	1.10355	0.94693	132618	1.12301	0.93352	218251.9			
0.004	1.10536	0.95053	119221	1.14814	0.94179	211926.5			
0.006	1.10855 0.95563		101371	1.14882	0.94434	200993.2			
0.008	1.10893	0.95614	99660	1.15234	0.94655	195279.7			
0.01	1.11126	0.96078	83017	1.15684	0.99522	-1368.1			
T=288 K		C1		C2					
m/(mol.Kg ⁻¹)	$Lf/(A^0)$ R_A		$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$			
0.002	1.10727	0.96465	85243	1.13962	0.99686	-15737.9			

0.004	1.10939	0.96844	70513	1.14418	0.99825	-15993.9	
0.006	1.10939	0.97315	49075	1.14947	1.00008	-17241.3	
0.008	1.10984	0.97539	39630	1.15244	1.00231	-22957.1	
0.01	1.12748	0.98083	38317	1.15481	1.00343	-24773.9	
T=293 K		C1			C2		
m/(mol.Kg ⁻¹)	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	
0.002	1.12835	0.9864	8808	1.16076	1.00723	-40901.9	
0.004	1.12982	0.98848	1465	1.16146	1.00833	-44721.1	
0.006	1.13115	0.99314	-17345	1.16358	1.00895	-44721.1	
0.008	1.13276	0.99462	-21735	1.16698	1.01026	-46123	
0.01	1.13363	0.99563	-25029	1.16997	1.01112	-46123	
T=298 K	C1			C2			
m/(mol.Kg ⁻¹)	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$ R_A		$\Phi v/(m^3.mol^{-1})$	
0.002	1.14084	1.00386	-63926	1.17159	1.03965	-187722.9	
0.004	1.14158	1.00995	-92344	1.17202	1.05692	-260185.9	
0.006	1.15807	1.01492	-92979	1.173311	1.06206	-279413.4	
0.008	1.15940	1.0182	-106649	1.175903	1.06455	-286226.2	
0.01	1.15975	1.02027	-115916	1.176624	1.06478	-286260.4	
303K		C1		C2			
m/(mol.Kg ⁻¹)	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	$Lf/(A^0)$	R _A	$\Phi v/(m^3.mol^{-1})$	
0.002	1.20775	0.95609	187248	1.226671	0.99902	-5113.8	
0.004	1.21196	0.95796	183086	1.230938	1.00720	-37580.3	
0.006	1.17964	2.06626	130560	1.234773	1.00976	-44435.4	
0.008	1.22485	0.97271	122497	1.255105	1.01651	-50008.5	
0.01	1.22864	0.97437	119112	1.285221	1.02722	-61667.2	

Table2: Limiting Apparent molar volume, solute-solvent interaction, limiting apparent expansibility, B,A

	70% DMF										
Т	$\Phi^0 V(m^3.mol^{-1})$	Sv	ΔΦ⁰ν	ΔΤ	Φ ⁰ Ε/(m ³ . mol ⁻¹ .K ⁻¹)	α	last	B/(dm ³ . mol ⁻¹)	A/(dm ³ . mol ⁻¹)	dB/dT	
					C1						
283	-299265	148893.6						0.79547	-0.00635	0.0548	
288	-605363	2359987	-205328	10	-20532.7			0.54800	-0.02680	-0.04944	
293	-504593	-1034714				0.102179	-6205.18	0.30108	-0.01379	-0.03599	
298	-851508	799855.6	-825846	10	-82584.5			0.18806	-0.01068	-0.01299	
303	-1330439	4411153						0.17113	-0.00530	-0.01881	
C2											
283	-151197	62627.86						-0.18662	0.00290	0.02275	
288	-176695	81521.06	-54103.4	10	-5410.3			0.22757	-0.02941	0.02895	
293	-205300	108114.8				0.081027	-2244.91	0.10293	-0.01845	-0.00522	
298	-237177	96827.11	-278595	10	-27859.4			0.17534	-0.01656	0.01772	
303	-483895	632983.5						0.28018	-0.01739	-0.01753	
					R1						
283	119571	-1039444						-0.25868	0.00381	-0.03754	
288	23928	-119532	-99969.3	10	-9996.9			-0.3753	0.01125	-0.0092	
293	19601	-92077.7				0.066322	2259.392	-0.35065	0.01149	0.01063	
298	91104	-1268938	125969.9	10	12596.9			-0.26905	0.01268	0.02225	
303	145571	-5680007						-0.12807	0.01083	0.02690	
					R2						
283	-77014	-189651						-0.32584	0.00643	-0.02909	
288	-100439	-32472.9	-31762	10	-3176.2			-0.29086	0.00513	0.01623	
293	-108776	-93308.8				0.034661	-118.816	-0.16348	0.00470	0.01204	
298	-48336	-1703216	-43643	10	-4364.3			-0.17043	0.00492	-0.00617	
303	-152420	-229909						-0.22516	0.01328	0.01704	
					75%DM	F	-				
Т	$\Phi^0 V(m^3.mol^{-1})$	Sv	$\Delta \Phi^0 V$	ΔΤ	Φ ⁰ E/(m ³ .m ol ⁻¹ .K ⁻¹)	α	last	B/(dm ³ . mol ⁻¹)	A/(dm ³ . mol ⁻¹)	dB/dT	
					C1						
283	212452	320380						0.76246	-0.00873	0.08714	
288	8433	254165	-159708	10	-15970.8			0.87147	-0.02906	-0.02937	
293	52744	-296667				0.017874	3382.712	0.46878	-0.01147	-0.04155	
298	-82304	673907	178562.9	10	17856.2			0.45595	-0.01120	0.00508	
303	231307	279031						0.51964	-0.03088	-0.0456	

					C2						
283	221758.5	696457						0.47400	-0.010538	0.03166	
288	162189.6	732578	-204715	10	-20471.5			0.31660	-0.006737	-0.01506	
293	17043.4	474639				-3.22692	-6905.26	0.32339	-0.017125	-0.01537	
298	-60770.8	462696	-895242	10	-89524.1			0.16294	-0.00243	-0.00178	
303	-878198.1	3842127						0.30559	-0.006493	-0.01629	
	R1										
283	172026.0	-864943						0.16662	0.01717	0.02420	
288	125866.7	-924462	-132628	10	-13262.8			0.24204	0.01016	0.00878	
293	39397.6	-669097				0.107458	3499.286	0.25448	0.01082	0.00706	
298	-28745.2	-875210	217300	10	21730.0			0.31267	0.01923	-0.01126	
303	256697.8	-1E+06						0.14185	0.02180	-0.03127	
					R2						
283	394431.1	-3E+06						-0.01023	0.01810	-0.01108	
288	-6229.5	-174879	-432186	10	-43218.5			-0.11077	0.01208	-0.00646	
293	-37754.8	-90208				0.481634	5006.92	-0.07487	0.00418	0.016724	
298	-130587.8	-2E+06	68506.0	10	6850.6			0.05645	0.00344	-0.02413	
303	30751.2	-940491						-0.31617	0.01019	-0.00565	

The variation of Lf, $R_A \& \Phi v$ along with conc. at different temperature are shown in table-1 and table-2. From this, it is found that the decrease in free length with increase in concentration of linear molecules indicates that there is a significant interaction between solute and solvent molecules, suggesting a structure promoting behavior on addition of solute. The increase in temperature, however, makes the free length to increase as expected due to thermal expansion of the liquids [18].

The variation of relative association in the systems of cyclic molecules indicates the presence of molecular association between solute and solvent with addition of solute, which is in accordance with that reported by Jahagirdar and Shankarwar [19]. It has also been observed from the table that Φv varies linearly with concentration at all temperature. It is dependent on size and geometrical arrangement of solute in solution. A marked observation has been made that apparent molar volume increases with decrease in concentration of solute for the cyclic forms at all temperature indicating the decrease in stacking interaction between solute and solvent [20].

In table-3 are listed the values of slopes (Sv) for all systems at different temperature. It is observed from the above table that for C1,C2 systems; the values of Sv are positive, except that for C1 at 293K; while that for R1,R2, the value of Sv are negative, which can be due to cyclisation of molecular structure resulting in weak ion-ion interaction. For R1, R2 the value of Sv becomes more and more negative with rise in temperature. However in case of C1, C2, the value of Sv varies non linearly, but it is positive with increase or decrease of temperature.

In table-3 are also listed the values of limiting apparent molar volume of solutes ($\Phi^0 v$) at different temperature, showing non-linear variation.

Romeo [21] observed that from the sign of $d^2\Phi^0 v/dT^2$; it can be decided whether the particular solute when dissolved in solvent, will act as structure maker or structure breaker. It has been observed that, except R1 having positive value of $d^2\Phi^0 v/dT^2$ is acting as structure breakers. Also C1 is a structure breaker and solute follows this order at low temperature; R1>R2>C2> C1.

It has been shown by Romeo et.al [22] that the coefficient of thermal expansion (α^*) can be used to interpret the solute-solvent interactions; which increases in the order R2<R1<C2<C1.

M. S. Wagh et al

The structure of solute plays an important role in deciding the values of α^* . The largest value suggests higher value of expansivity. The data of $d^2\Phi v/dT^2$ matches with that obtained from α^* ; but R1, R2 and C2 slightly deviate the order.

It has been observed that B values decreases with temperature. These values are listed in table-3.Recently, it has been emphasized by a number of workers that dB/dT is a better criterion for determining the structure making or breaking tendency of any solute. The positive sign for dB/dT are structure breakers and those having negative sign are structure makers [23]. C1 is behaving as structure breaker at high temperature. The same trend is observed in C2 and R2 which can be due to addition effect of $-CH_3$ group with slight deviation in the value at T=298 K.For all the solute as the percentage of solvent increases Lf increases may be due to decrease in water content less number of molecules are available for making Hydrogen bond with DMF molecule, thereby affecting the other parameters.

Acknowledgements

The authors acknowledge with thanks the support of the Principal, Head of Department and Director of Dr. I. N. Nimdeokar P. G. & Research Centre for Chemistry, Hislop College Nagpur.

REFERENCES

[1] E. J Gonzalez, L Alonso, A.Dominguez, J. Chem. Eng. Data 2006, 51, 1446–1452.

- [2] U Domanska,.; M. Laskowska,. J. Chem. Eng. Data 2009, 54, 2113-2119.
- [3] B.Gonz^alez,; N.Calvar,; E Gomez, I. Dominguez, A Dominguez, *J. Chem. Eng. Data* **2009**, 54, 1353–1358.
- [4] K.A Kurnia, M. A Mutalib, J. Chem. Eng. Data, 2011, 56 (1), 79–83.
- [5] A Ahmady, M. A Hashim, M. K Arora, J. Chem. Eng. Data DOI: 10.1021/je1006949.
- [6] A. K Ziyada, C. D. Wilfred, M. A Bustam, Z. Man, T. Murugesan, J. Chem. Eng. Data DOI: 10.1021/je901050v.
- [7] M. T Zafarani-Moattar, H Shekaari. J. Chem. Eng. Data 2005, 50, 1694–1699.
- [8] M.Iglesias, A Torres, Gonzalez-Olmos, R, D. Salvatierra, J. Chem. Thermodyn. 2008, 40, 119–133.
- [9] X. L Yuan, S. J Zhang, X. M. Lu, J. Chem. Eng. Data 2007, 52, 596–599.
- [10] Z.Lei, J Yuan, J Zhu,... J. Chem. Eng. Data 2010, 55, 4190-4194.
- [11] O. Redlich, A.T Kister, Ind. Eng. Chem. 1948, 40, 345–348.
- [12] F Franks. D.S Reid, in: F. Franks (Ed.), Water a comprehensive Treatise, vol.II, Plenum press, New York, **1973**.
- [13] B.Naim, Sand Thermodynamics of solution of argon in mixtures of H2O and D2O, *J. Chem*, *Phys.* **1966**, 45, 1848-1849.

[14] W Wen, Horne, R.A.; (Ed), Water and Aqueous Solutions; Structure, Thermodynamics and Transport Process, Wiley Interscience, NY, 1972.

[15] R.L Kay, F Franks, (Ed.), Water a Comprhensive Treatise, vol.III, Plenum press, New York, 1973.

[16] J.E Desnoyers, G Peron, "J.Solution. Chem.1, 1972, 3,199-212.

[17] Bhaskar, C.S.; Ph.D. Thesis, Amravati University, Amravati. (2003).

[18] J.I. Bhat, N.V Sabitha, Acoustic haracteristics of sodium salt of N-Chloro-p-toluene sulphonamide in aqueous and binary aqueous media at 303 K.2002,42, 520-525.

[19] D.V Jahagirdar, A.G Shankarwar,; Ind. J.Pure and Appl Ultrasonic., 2000,85,361-373.

[23] 24. R.L Kay, T.Vituccio, C. Zawoyski, D.F. Evans J.Phys.Chem., 1966, 70, 2336-2341.

^[20] A.P Mishra, S.K Gautam, Ind. J.Chem. A., 2001, 40, 100-108.

^[21] C.M. Romeo, M.S.Piez, J.C. Arteaga , J. Chemical. Thermodynamics. 2007, 39, 1101-1109.

^[22] C.M.Romero, M.S.Paez., D.Perez., A comparative study of the volumetric properties of dilute aqueous solutions of 1-Propanol, 1,2-propendiol, 1,3-propendiol, and 1,2,3-propanetriol at various temperatures. **2008**, 40, 1645-1653.