
Collaborative Problem Solving and Groupware in the Software Development
Domain

Department of Computer and Information Science, Lead City University, Nigeria
*Corresponding author: Samuel EL, Department of Computer and Information Science, Lead City University, Nigeria E-mail:
slucky@babcock.edu.ng

Received date: October 29, 2021; Accepted date: November 12, 2021; Published date: November 19, 2021

Citation: Ajayi W, Samuel EL, Sofoluwe AS, Babatunde TO (2021) Collaborative Problem Solving and Groupware in the Software Development
Domain. Am J Compt Sci Inform Technol Vol.9 No.10: 116.

Abstract
Problems are at the core of much of what people
accomplish at work on a daily basis. The difficulties you face
can be vast or small, simple or complex, easy or tough,
whether you're addressing a problem for an internal or
external client, helping people who are solving problems, or
identifying new problems to solve. The different approaches
and ways in which the challenges we meet in software
development can be decreased or perhaps eliminated
permanently will be demonstrated using problem resolution
strategies in software development. Understanding and
assessing a set of requirements for an issue, devising a
solution, and executing that answer on the computer,
together with tests that prove the program fulfils its goals,
would all be part of the programming.

Keywords:

Gathering Information; Models for collaborative problem
solving; Groupware

Introduction
In software development, problem solving is the process of

attempting to solve a problem domain by applying theoretical
knowledge and research, best practices, and putting ideas to the
test. After all, the software you're creating should be useful.
What are your goals, and how can you break them down into
features, user cases, stories, and processes. After all, what good
is software if it doesn't make things easier, faster, more efficient,
or cheaper, or if it doesn't solve a problem like employees
deviating from a process?

So, in software development, problem solving is the use of
logic and process thinking combined with creativity to solve a
software challenge. The technique for resolving software
development problem.The process of fixing a software
development challenge, in my opinion, may be broken down
into four steps:

• Determine the problem.
• Gather information
• Iterate on possible solutions.

• Put your solution to the test.

Method of collaborative problem solving
and groupware in the software
development domain

In software development, problem solving is critical. Many of
the fundamental software development processes, from
requirements analysis, specification, and design through testing
and verification, may be seen as conventional problem-solving
methods [1]. As the complexity of software development has
increased, a new aspect has emerged: collaboration. Indeed, the
increasing complexity of applications has demanded the usage
of teams or groups to develop software, as individuals are
unable to develop huge software systems with sufficient speed
or quality. This review will focus on collaborative or group
problem solving research and development in the field of
software development, with the goal of identifying major
outstanding topics and possibilities for both theory and practice
advancement [2].

The modern computing professional works in an environment
where programs can be thousands or millions of lines long, are
frequently adjusted and maintained rather than built, are edited
in a tool-rich environment, and work is almost always a
collaborative endeavour [3] computer scientists are unprepared
for today's environment since their pre-professional training
typically concentrates on the creation of little programs
(programming-in-the-small) and provides little expertise in
sophisticated software development. Large-scale system
development, on the other hand, necessitates a collaborative
effort, and the more complex the problem, the greater the team
required to tackle it. The fact that domain-specific expertise is
typically localized and geographically spread is another element
that contributes to the requirement for team development.
According to studies, the ability to deploy good groupware is
important to the success of such developers, especially when
they are distributed [4]. Collaboration in system development
has become a requirement, not just a theoretically feasible
alternative, as a result of these causes. Fortunately, the advent
of the World Wide Web has made geographically distributed
collaborative systems technologically practical in ways that were
before difficult or impossible. The word "groupware" will be

Review Article

iMedPub Journals
www.imedpub.com

American Journal of Computer Science and Information
Technology

ISSN

Vol.9 No.10:116
2021

© Copyright iMedPub | This article is available from: https://www.imedpub.com/computer-science-and-information-technology/ 1

1* , Segun Sofoluwe A1 , Olomola Babatunde T 1W. Ajayi1 , Lucky Samuel E

,

http://www.imedpub.com/
https://www.imedpub.com/computer-science-and-information-technology/

used to describe the software environments required to support
a team whose members cooperate via a network [5]. Groupware
solutions are designed to give a team a shared workspace even if
they are geographically and temporally distant. The use of
groupware or collaborative solutions can help to alleviate the
logistical challenges that come with using distributed skills.
Indeed, the future generation of development processes is
projected to place a premium on the efficient integration of
scattered knowledge.

Collaboration has been shown to have a favourable influence
on both experienced and rookie programmers' experimental
trials. Wilson and Nosek [6] conducted research to see if prior
cooperation experience could help novice programmers with
problem-solving and programming tasks. The findings supported
the idea that collaborative efforts could increase the problem-
solving skills needed for programming assignments. The study
compared a control group of beginner programmers who
worked alone on a software challenge to a group of
programmers who were free to talk with one another. The
results showed that even simple collaboration improved the
beginner programmer's problem-solving abilities. The study also
discovered evidence that an individual's ability had minimal
overall impact on team performance, phenomena they argue
occurs because teamwork compensates for individual flaws. The
study also found that the collaboration gave the programmers
more confidence in the answer and made the problem-solving
process more enjoyable for them. Beginning programmers
appear to benefit from collaborative interactions, which appear
to aid in the analysis and modelling of problems, as well as the
mastery of the analytical abilities required for such activities.
Other controlled experimental investigations show that
including collaborative activities into problem solving and
programming instruction is beneficial even at the early stages
[7]. Collaboration helps the problem-solving process, according
to experiments with experienced software developers [8].
Indeed, all of the study's team projects outperformed equivalent
independently completed projects, while team members were
more personally satisfied with their work and had more
confidence in their answers.

The overall goal of this study is to find strategies to make the
software development process more efficient through
collaboration. The review will focus on four areas: group
problem solving, individual problem solving, groupware, and
group psychology/sociology, including group and individual
problem solving models and tools, groupware systems, group
cognition, and team dynamics in the software development
domain. With the goal of identifying a study topic that will
represent an improvement in the state of the art, we will
highlight contributions and remaining issues in group problem
solving and group software development.

Models for collaborative problem solving
By definition, a group engaged in collaborative problem

solving produces a plan for building a solution to tackle an
existing problem. Collaborative groups appear to be better at
dealing with complicated tasks than individuals, in part because
groups have a wider range of skills and abilities than individuals

[9]. Regardless, research show that group problem solving is
more difficult than solo issue solving [10]. It can present group-
specific issues such as an interaction environment that limits
free expression of ideas [11], according to Hohmann
participation biases, disputes resulting from interpersonal
issues, or obstacles coming from the group's structure. Overall,
however, the advantages of problem-solving teamwork greatly
outweigh the drawbacks [12]. One prominent benefit of
cooperation is the ancillary improvement of human capital that
occurs as a result of individuals learning from the talents and
abilities of others in the group [13]. The requirement to
communicate designs, critiques, and arguments to other
members of a group also improves a person's technical, critical,
and interpersonal abilities [14].

A collaborative problem solving model is a strategy for
facilitating collaborative problem solving that is clear. Not only
would a comprehensive model include generic problem-solving
procedures, domain-specific tasks, and essential cognitive skills,
but it will also incorporate the communication and coordination
activities that a collaborative setting necessitates. It's possible
that the collaborative problem-solving approach is similar to the
solo problem-solving approach. Indeed, Hohmann observes in
his key work on group software development that collaborative
problem solving can be done using the same problem solving
methodologies as individual problem solving. While it is vital for
a group to clearly choose and adopt a problem-solving
approach, and while group members should be familiar with the
method, according to Hohmann, the method does not have to
be devised specifically for group issue solving. Despite this
laissez-faire attitude toward the problem-solving method of
choice, Hohmann observes that the way a team adapts such a
strategy in a collaborative context differs significantly from the
way an individual applies the same method.

Groupware
A groupware system can be classified as synchronous,

asynchronous, or a combination of the two. Synchronous
groupware systems operate in real time and facilitate group
communication and collaboration through the use of tools like
instant messaging. An electronic meeting system for
brainstorming is an example. Asynchronous technologies, such
as email, allow users to access saved messages or transmit
messages to be seen later. A system having a message board and
a chat feature is an example of a system with both asynchronous
and synchronous features [15].Investigated how synchronous
and asynchronous techniques affect communication behaviour
differently. Asynchronous systems, for example, have extensive
conversations with several, concurrent discussion threads,
whereas synchronous systems have participants focusing on a
single issue at a time [16]. Make a new distinction between
synchronous and asynchronous systems, based on how tasks
and information are shared rather than the temporal features of
interactions. Asynchronous systems are defined as groupware
systems in which tasks and choices are assigned individually and
not shared until they are completed. Synchronous systems, on
the other hand, provide a completely shared workspace that is
always available to all users, where work products are generated

American Journal of Computer Science and Information Technology
ISSN Vol.9 No.10:116

2021

2 This article is available from: https://www.imedpub.com/computer-science-and-information-technology/

https://www.imedpub.com/computer-science-and-information-technology/

and evaluated in a collaborative environment with little task
separation, and then merged by joint team decisions.

Groupware software
Some of the basic features of groupware functionality have

been expanded into a number of settings. This section will go
through some of the collaboration tools, platforms, and settings,
as well as collaborative problem solving and software
development. The review will be selective rather than thorough,
as it is primarily designed to demonstrate the types of systems
that are accessible. We'll start with a look at some common
groupware systems, then move on to systems intended
expressly for collaborative problem solving and/or software
development. Finally, we shall focus in greater depth on the
features of several important collaborative systems including
Lotus Notes, Groove, and Rational Rose [17].

Conclusion
Software development groupware's ultimate goal is to

improve the software development process. To date, such
applications have placed a greater emphasis on processes and
technologies than on people. Current systems have similar
limits, as well as corresponding chances for improvement. These
shortcomings stem from "not comprehending the particular
demands this class of software imposes on developers and
users," according to a notable researcher in the field. The aim is
to convert these flaws into research opportunities.

The general result of our analysis of the literature is that
merging perspectives and issues from collaborative problem
solving, psychology, sociology, and collaborative software
development can significantly advance the state of the art. Our
overall goal will be to design a collaborative problem-solving
model that takes into account a collaborative software
development group's problem-solving cognitive processes as
well as psychological and sociological elements that influence
teamwork. The model will specifically handle a group's
communication, cooperation, and coordination needs.

References
1. Deek FP (1999) The software process: A parallel approach through

problem solving and program development. Comput. Sci Educ 9:
43-70.

2. Deek FP (1997). An Integrated Environment for Problem Solving
and Program Development. Dissertation, New Jersey Inst Techno.

3. Mulder M, Haines JE, Prey JC, Lidtke DK (1995). Collaborative
Learning in Undergraduate Information Science Education”,
Papers of the 26th SISCSE technical symposium Comput. Sci Educ
400-401.

4. Nunamaker JF (1999). Collaborative computing: The next
millennium. Comput. Sci Educ 32:66-71.

5. Zwass V (1998). Foundations of Information Systems, Irwin
McGraw-Hill, Boston, Massachusetts E-comm.

6. Prey JC (1996). Cooperative learning and closed laboratories in an
undergraduate Computer Science curriculum. Comput. Sci Educ
Bulletin. 28: 23-24.

7. Wilson JD, Hoskin N, Nosek JT (1993). The benefits of
collaboration for student programmers. Comput. Sci Educ Bulletin.
25: 160-164.

8. Sabin RE, Sabin EP (1994). Collaborative learning in an
introductory computer science course. Comput. Sci Educ Bulletin
12: 304-308.

9. Nosek JT (1998). The case for collaborative programming.
Communications of the ACM Digital Lib 41: 105-108.

10. Finnegan P, Mahony LO (1996). Group problem solving and
decision making: An investigation of the process and the
supporting technology. J Inf Technol. 11: 211-221.

11. Hoffman LR (1965). Group problem solving. Advances in
experimental social psychology. Am Psychol Assoc2: 99-132.

12. Hohmann L (1997). Journey of the Software Professional: The
Sociology of Computer Programming. Prentice Hall J Softw Profes.

13. Guzdial M, Kolodner J, Hmelo C, Narayanan H, Carlson D, et al,
(1996). Computer support for learning through complex problem
solving. Communications of the ACM. 39: 43-45.

14. Hiltz SR, Turoff M (1985). Structuring computer-mediated
communication systems to avoid information overload.
Communications of the ACM. 28: 680-689.

15. Jarzabek S, Huang R (1998). The case for user-centered CASE tools.
Communications of the ACM. 4: 93-99.

16. McGuire EG, Randall KA (1998). Process improvement
competencies for IS professionals: a survey of perceived needs. In
Proceedings of the 1998 ACM SIGCPR conference on Computer
personnel research 1: 1-8.

17. Grudin J (1994). Groupware and social dynamics: Eight challenges
for developers. Communications of the ACM. 37: 92-105.

American Journal of Computer Science and Information Technology
ISSN Vol.9 No.10:116

2021

© Copyright iMedPub 3

https://doi.org/10.1076/csed.9.1.43.3812
https://doi.org/10.1076/csed.9.1.43.3812
https://doi.org/10.1076/csed.9.1.43.3812
https://doi.org/10.1201/1078/43877.21.1.20041201/78987.7
https://doi.org/10.1201/1078/43877.21.1.20041201/78987.7
https://doi.org/10.1201/1078/43877.21.1.20041201/78987.7
https://doi.org/10.1201/1078/43877.21.1.20041201/78987.7
https://doi.org/10.1109/MC.1999.789753
https://doi.org/10.1109/MC.1999.789753
https://doi.org/10.1145/237477.237490
https://doi.org/10.1145/237477.237490
https://doi.org/10.1145/237477.237490
https://doi.org/10.1145/169073.169383
https://doi.org/10.1145/169073.169383
https://doi.org/10.1145/169073.169383
https://doi.org/10.1145/191029.191156
https://doi.org/10.1145/191029.191156
https://doi.org/10.1145/191029.191156
https://doi.org/10.1145/1833310.1833319
https://doi.org/10.1145/1833310.1833319
https://doi.org/10.1177/026839629601100303
https://doi.org/10.1177/026839629601100303
https://doi.org/10.1177/026839629601100303
https://doi.org/10.1037/h0024643
https://doi.org/10.1037/h0024643
https://doi.org/10.1145/227210.227600
https://doi.org/10.1145/227210.227600
https://doi.org/10.1145/227210.227600
https://doi.org/10.1145/3894.3895
https://doi.org/10.1145/3894.3895
https://doi.org/10.1145/3894.3895
https://doi.org/10.1145/280324.280338
https://doi.org/10.1145/280324.280338
https://doi.org/10.1145/279179.279180
https://doi.org/10.1145/279179.279180
https://doi.org/10.1145/279179.279180
https://doi.org/10.1145/279179.279180
https://doi.org/10.1145/175222.175230
https://doi.org/10.1145/175222.175230

	Contents
	Collaborative Problem Solving and Groupware in the Software Development Domain
	Abstract
	Introduction
	Method of collaborative problem solving and groupware in the software development domain
	Models for collaborative problem solving
	Groupware
	Groupware software

	Conclusion
	References

