

## **Pelagia Research Library**

Der Chemica Sinica, 2012, 3(5):1276-1279



### Chemical composition of Vetiveria nigritana from Koulikoro Area

# Lassine Sidibé<sup>a</sup>\*, Baba Fofana<sup>a</sup>, Nah Traoré<sup>a</sup>, Adama Tolofoundyé<sup>a</sup>, Gilles Figuiredo<sup>b</sup>, Jean C. Chalchat<sup>c</sup>, Jean M. Bessière<sup>d</sup>

<sup>a</sup>Laboratoire de Chimie Organique et Chimie des Substances Naturelles, Université de Bamako, Mali. <sup>b</sup>LEXVA Analytique, 460 rue du Montant, 63110 Beaumont AVAHEA, 38 avenue de Clémensat, 63540 Romagnat, France. <sup>c</sup>Laboratoire de Chimie des Hétérocycles et des Glucides, Chimie des Huiles Essentielles, Campus des Cézeaux, 63177 Aubière, France. <sup>d</sup>Université de Montpellier II, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France

#### ABSTRACT

Oil was obtained from roots of Vetiveria nigritana (Benth.) Stapf collected in Koulikoro and analyzed by GC and GC/MS. Fifty-four constituents (79.7% of the whole oil) were identified. Prezizanoic acid (15.0%), preziza-7(15)-en-12-ol (9.5%), cedren-8-en-15-ol (6.2%), preziza-7(15)-en-3 $\alpha$ -ol (6.0%) and zizanoic acid (5.9%) were the major componelits of Vetiveria nigritana oil.

Key Words: Vetiveria nigritana, Poaceae, essential oil composition, prezizanoic acid.

#### **INTRODUCTION**

The first botanical descriptions of this plant were published in *Niger Flora* [1] and in *Flora of Tropical Africa* [2]. In some countries of Africa, in particular Senegal, Gabon, Mali and Niger, roots of *Vetiveria nigritana* were used in the following fields: perfume, cosmetics and medicine. Macerations or infusions of roots were added 10 drinking water or used as an antidiarrheal for children [3].

In spite of traditional use, there was no work about any Components of these roots. Only a few articles were previously published about Angolan root oil Cardoso et al. [4, 6] and Nigam et al. [7]. Hutchinson et al. made reference to the variations of percentage of essential oil certainly relating to the soils [8]. In the book on genus *Vetiveria* published in 2002, Maffei [9] reported ail studies concerning *V. zizanioides*, but only mentioned *V. nigritana* without any comment.

In this work, we have analysed the composition of the oil from the roots of V. nigritana from Koulikoro.

#### MATERIALS AND METHODS

- Vegetable material

Roots of *Vetiveria nigritana* were collected from Koulikoro, near Bamako (Mali, Africa) in March 2010. Plant material was identified by Aymonin G (Muséum d'Histoire Naturelle, Paris, France). A voucher specimen of the whole plant has been deposited in the Herbarium of the University of Clermont-Ferrand (France).

#### - Plant Part

The oil was obtained from air dried roots by steam distillation in Kaiser & Lang-type apparatus for 12 h to produce yellow oil in 2% w/w yield.

| Compounds <sup>a</sup>                                 | рг           | RRI <sup>b</sup> |            |            |
|--------------------------------------------------------|--------------|------------------|------------|------------|
| Compounds <sup>a</sup>                                 | 1            | 2                | MW         | %          |
| α-cubebene                                             | 1351         | 1628             | 204        | 0.2        |
| $C_{14}H_{20}^{*}$                                     | 1369         |                  | 188        | 0.9        |
| α-funebrene                                            | 1385         | 1532             | 204        | 0.2        |
| $C_{14}H_{22}^{*}$                                     | 1387         |                  | 190        | 2.2        |
| β-cubebene                                             | 1390         |                  | 204        | 1.2        |
| β-cedrene                                              | 1424         |                  | 204        | 1.6        |
| β-gurjunene                                            | 1334         |                  | 204        | 0.4        |
| preziza-7(15)-ene                                      | 1452         | 1666             | 204        | 1.7        |
| γ-gurjunene                                            | 1472         |                  | 204        | 0.1        |
| ar-curcumene                                           | 1480         |                  | 204        | 0.2        |
| α-vetispirene                                          | 1481         | 1754             | 204        | t          |
| germacrene D                                           | 1485         |                  | 204        | 0.2        |
| α-muurolene                                            | 1500         |                  | 204        | 0.3        |
| β-bisabolene                                           | 1506         |                  | 204        | 0.1        |
| γ-cadinene                                             | 1514         |                  | 204        | 0.1        |
| β-curcumene                                            | 1516         |                  | 204        | 0.2        |
| Isocalamenene                                          | 1517         |                  | 204        | 0.2        |
| myristicin                                             | 1519         |                  | 192        | 0.2        |
| spirovetiva-1(10,7(11)-diene                           | 1523         | 1759             | 204        | t          |
| eremophila-1(10),7(11)-diene                           | 1525         | 1764             | 204        | 0.1*       |
| γ-vetivenene                                           | 1525         | 1837             | 204        | 0.2        |
| ω-cadinene                                             | 1526         |                  | 204        | 0.2        |
| α-calacorene                                           | 1527         | 1946             | 204        | 0.1        |
| elemol                                                 | 1550         | 2093             | 222        | 0.2        |
| 15-nor-prezizaan-7-one                                 | 1572         |                  | 206        | 0.2        |
| ar-turmerol                                            | 1583         |                  | 218        | 0.1        |
| 12-nor-preziza-7(15)-en-2-one                          | 1593         |                  | 204        | 2.7        |
| 15-nor-funebran-3-one                                  | 1599         |                  | 206        | 0.2        |
| 13-nor-eudesma-5-en-11-one (epimer B)                  | 1603         | 2210             | 206        | 1.1        |
| 12-nor-ziza-6(13)-en-2-one (khusimone)                 | 1604         | 2219             | 204        | 0.7        |
| 12-nor-ziza-6(13)-en-2 $\beta$ -ol                     | 1610         |                  | 206        | 1.7        |
| funebren-15-al                                         | 1618         | 0125             | 218        | 5.1        |
| 10-epieudesmol                                         | 1624         | 2135             | 222<br>220 | 0.8<br>6.0 |
| Preziza-7(15)-en-3α-ol<br>β-eudesmol                   | 1640<br>1651 | 1651             | 220        | 1.0        |
| cyclocopacamphan-1 2-ol (epimer A)                     | 1663         | 2358             | 220        | 0.7        |
| ziza- $6(13)$ -en- $3$ -one ( $3\beta$ - methyl group) | 1682         | 2550             | 218        | 0.6        |
| 2-epi-ziza-6(13)-en-3α-ol                              | 1683         | 2427             | 220        | 0.5        |
| prezizaan-1 5-al                                       | 1683         | 2727             | 220        | 2.2        |
| 2-epi-ziza-6(13)-en-12-al                              | 1689         |                  | 220        | 0.3        |
| khusian-2-ol (helifolan-2-ol)                          | 1694         | 2359             | 222        | 1.9        |
| cedren-8-en-15-ol                                      | 1695         | 2007             | 220        | 6.2        |
| ziza-6(13)-en-12-yl methyl ether                       | 1698         |                  | 248        | 0.1        |
| eudesm7(11)-en-4 $\alpha$ -ol (juniper camphor)        | 1700         |                  | 222        | 0.2        |
| ziza-6(13)-en-3β-ol                                    | 1705         | 2442             | 220        | 0.8        |
| (E)-opposita-4(15),7(11)-dien-12-al                    | 1707         |                  | 218        | 0.2*       |
| ziza-5-en-12-ol                                        | 1713         | 2434             | 220        | 1.6        |
| ziza-6(13)-en-12-ol (khusirnol)                        | 1743         | 2547             | 220        | 2.3        |
| preziza-7(15)-en-12-ol                                 | 1761         |                  | 220        | 9.5        |
| isovalencenol                                          | 1782         |                  | 220        | 0.8        |
| isozizanoic acid                                       | 1786         |                  | 234        | 0.3        |
| vetiselinenol                                          | 1793         |                  | 220        | 0.7        |
| (Z)-isovalencenal                                      | 1812         |                  | 218        | 0.2        |
| zizanoic acid                                          | 1871         |                  | 234        | 5.9        |
| prezizanoic acid                                       | 1884         |                  | 234        | 15.0       |
| $C_{15}H_{22} O_2^*$ acid                              |              |                  | 234        | 7.5        |
| Hexadecanoic acid                                      |              |                  | 256        | 2.4        |
| TOTAL                                                  |              |                  |            | 90.3       |

<sup>a</sup> components listed in order cf elution trama HPS MS colunin; <sup>b</sup>RRI relative retenhion indices, calculated relative o 06—C32 nalkanes on the HPS MS (1) and HP Innowax (2)

*HPS MS* (1) and *HP Innowax* (2) capillarycolumns, respectively; unknownconp000ds2m/z 188(M) (95)173(86). 159 (20), 145 (100), 132 (35), 131 (55), 117 (68), 105 (25), 91 (50): 4: miz: 190 (M') (55), 175 (68), 161 (36),147 (27), 120 (47), 119(100), 105 (40), 92(36), 91 (70); 56: mjz: 234 (M') (22), 219(20). 189 (42), 173 (28), 164 (47), 147 (30), 145 (47), 131 (36), 119(60), 117(100), 108 (48), 105(37),91(56), 79(37), 67(23)

#### - GC and GC/MS

GC analyses were performed on a Hewlett Packard HP 6890 equipped with a split/splitless injector (280°C), a split ratio 1:10, using a HP-5 capillary column (25 m x 0.25 mm, film thickness 0.25 $\mu$ m). The temperature program was 50°C (5 mm) rising to 300°C at a rate of 5°C/min. Helium was used as the carrier gas at flow rate of 1.1 mL/min. The injection of the sample consisted of 1.0  $\mu$ L of the oil diluted to 10% v/v with acetone.

GC/MS analyses were performed by a Hewlett Packard 5973/6890 system operating in EI mode (70 eV), equipped with a split/splitless injector (280°C), a sp ratio 1:10, using two different columns: a fused silica HP-5 MS capillary column (25 m x 0.25 mm, film thickness 0.25 tm), and a HP-Innowax capillary column (60 m x 0.25 mm, film thickness 0.25  $\mu$ m).

The temperature program for the HP-5 MS column was  $50^{\circ}$ C (5 min) rising to  $300^{\circ}$ C at a rate of  $5^{\circ}$ C/min and for the HP- Innowax column,  $50^{\circ}$ - $250^{\circ}$ C at a rate of  $5^{\circ}$ C/min. Helium was used as the carrier gas at a flow rate of 1.1 mL/min. Retention indices for all compounds were determined according to the Van den Dool approach [10]. The identification of components was based on comparison of their mass spectra with those of Mc Lafferty and Stauffer [11], Adams [12] and Joulain [13] libraries, as well as by comparison of their retention indices with literature data.

#### **RESULTS AND DISCUSSION**

The composition of the oil from the roots of *V. nigritana* is summarized in Table I.

Fifty-seven compounds were detected (90.3% of the oil), among those, 54 were identified (79.7%). This oil was principally characterized by the presence of only sesquiterpene compounds. Alcohols and acids were the most important components (33.7% and 31.1%, respectively). Among the alcohols, preziza-7(15)-en-12-ol (9.5%), cedren-5-en-15-ol (6.2%), preziza-7(15)-en- 3-ol (6.0%), were the main compounds. The major acids were prezizanoic acid (15.0%), compound n°56 (7.5%) and zizanoic acid (5.9%). The sesquiterpene hydrocarbons (10.5%) were mainly represented by compound n°4 (2.2%), preziza-7(15)-ene (1.7%) and -cedrene (1.6%). 12-Nor-preziza-7(15)-en-2-one (2.7%) was the main ketone arnong a low percentage of total ketones (5.5%). Other components were found to be aldehydes (8.0%) and esters (0.1%).

The composition of oil of *V. nigritarza* 'vas compared to those of oils of *V. zizanioides* from different countries. Wey erstahl reported the composition of an Haitian oil [14], and more recently, Champagnat et al. studied *V zizanioides* oils from nine different geographical origins (unpublished work). The results of these authors are concordant and show that *V. zizanioides* oils from any geographical origin were characterized by the presence of 40-57% alcohols, 15-25% hydrocarbons, 13-16% ketones, approximately 5% aldehydes, a very low amount of esters (< 1%), and especially by a 10w percentage of acid compounds (< 2%).

As a result, the composition of the oil of V. *nigritana* (from Koulikoro) was mainly different from that of V. *zizanioides*, regarding the hydrocarbon and acid contents of these oils.

#### Acknowledgment

We are grateful to Aymonin G (Muséum dHistoire Naturelle, Paris) for helpful assistance in botanical identification.

#### REFERENCES

[1] Hooker WJ, Niger Flora: or an enumeration of the plants of western tropical Africa, Hippolyte Bailliere Publisher, London, **1849**, pp 573.

[2] Staph O, Gramineae. in: Flora of tropical Africa, L. Reeves & Co., London, 1917, 9, 157.

[3] Andrews FW, The flowering Plants of the Sudan. Volume III, T. Buncle & Co, Ltd., Arbroath, Scotland, 1956.

[4] Cardoso Do Vale J, Proença Da Cunha A, Vetiveria nigritana (Benth.) Stapf. de Angola, II- Contribuição para o estudo do oleo essencial, Garcia de Orta (Lisboa), **1964**, 12, 673-682.

[5] Cardoso Do Vale J, Proença Da Cunha A, Vetiveria nigritana (Benth.) Stapf. de Angola, Il- Coritribuiçao para o estudo dos alcools e cetonas do seu oleo essencial, Garcia de Orta (Lisboa), **1967**, 15, 205-224.

[6] Cardoso Do Vale J, Proença Da Cunha A, Vetiveria nigritana (*Benth.*) Stapf. of Angola, *Il- Contribution to the study of the alcohols and ketones of the essential oil Bol. Fac. Farm.*, Coimbra, **1969**, 29, 1-26.

[7] Nigam C, Radecka C, Komae H, *Essential oils and their constituents XXXVII, Isolation and structure of khusenol, a new sesquiterpenic primary alcohol from oil of vetiver.* J. Pharm. Sci., **1968**, 1029-1030, 57.

[8] Hutchinson J, Dalziel JM, *Flora of West Tropical Africa*. Volume III, 2<sup>nd</sup> edition, F.N. Hepper, London, **1972**.

[9] Maffei M, Vetiveria. The genus Vetiveria. Medicinal and Aromatic Plants - Industrial Profiles. Edit., R. Hardman, Taylor and Francis, London, 2002.

[10] Van Den Dool H, Kratz PD, A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr., **1963**, 463-471, 11.

[11] Mc Lafferty FW, Stauffer DB, The Wiley NBS registry of Mass Spectral Data, 2<sup>nd</sup> Edition, J.Wiley and Sons, NY, **1989**.

[12] Adams RP, Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, Allured Publishing Corp., Carol Stream, IL, 2001.

[13] Joulain D, König WA, The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. E.B. Verlag, Hamburg, 1998.

[14] Weyerstahl P, Marschall H, Splittgerber U, Wolf D, Surburg H, *Constituents of Haitian vetiver oil*, Flav. Fragr. J., **2000**, 395-412, 15.