

Pelagia Research Library

Der Chemica Sinica, 2012, 3(1): 279-286

Chemical composition of Essential Oils from Nigerian Plants

Isiaka A. Ogunwande^{a,*}, Olanrewaju Eresanya^a, Nudewhenu O. Avoseh^a, Temitope Oyegoke^a, AbdulRazaq O. Ogunmoye^b and Guido Flamini^c

 ^a Natural Product Unit, Department of Chemistry, Faculty of Science, Lagos State University, P.M.B.0001,Ojo, Lagos, Nigeria
^bDepartment of Chemistry, Crescent University, Abeokuta, Ogun State, Nigeria
^cDipartimento di Scienze Farmaceutiche, sede Chimica Bioorganica e Biofarmacia, Universita di Pisa, Via Bonanno 33, 56126 Pisa, Italy

ABSTRACT

Essential oils obtained by separate hydrodistillation of leaves of three plants collected in Nigeria were analysed comprehensively for their constituents by means of gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Germacrene D (28.4%), α -pinene (17.1%), β -caryophyllene (7.5%) and caryophyllene oxide (6.0%) were the major compounds of Aspilia africana (Pers.) C. D. Adams (Asteraceae). The oil of Lippia multiflora Moldenke (Verbenaceae) comprised mainly of sabinene (13.0%), β -caryophyllene (21.8%) and rimuene (14.6%) as dominant compounds, with significant quantity of abietatriene (7.1%), β -pinene (4.0%) and caryophyllene oxide (4.3%). The species is a source of new chemotype. β -Caryophyllene (19.0%) and geranial (10.6%) were identified in higher proportions from Spondias lutea L. (Anacardiaceae), with significant amounts of neral (5.1%), caryophyllene oxide (5.6%) and δ -cadinene (4.6%). The paper will discuss further the chemotaxonomic importance of the results.

Keywords: Aspilia africana, Lippia multiflora, Spondias lutea, essential oils, chemical composition, terpenes

INTRODUCTION

Aspilia africana (Pers) C. D. Adams, is an important member of Asteraceae family of plant. It is a tropical weed with deep yellow flowers and reaching about 1.5m long. It is used in traditional medicine for the teatment of varoius disorders such as gonorrhea, cough wouds and insect bites [1]. Variuos biological activities such as anticoagulant, anti-inflammatory and anti-malarial have been attibuted to the plant and its extracts [2, 3]. To date only three reports have appeared in literature of the composition of its essential oils [2-4].

Lippia multiflora Moldenke, Verbenaceae, is a shrubby aromatic plant, growing up to 1.2 m whitish flowers on cone-like heads in a terminal panicle. The volatile oils of *L. multiflora* have been extensively investigated with variations in the chemical compounds depending on chemotype and location [5, 6]. Oxygenated monoterpenoids such as thymol, 1, 8-cineole, eugenol, geranial, carvacrol etc were the predominat class of compounds identified in the oil samples.

Spondias lutea L., or Spondias mombin is a tree, a species of flowering plant in the family Anacardiaceae. It is native to the tropical Americas, including the West Indies. The tree has been naturalized in parts of Africa, India, Sri

Lanka and Indonesia. It is rarely cultivated. The pulp is either eaten fresh, or made into juice, concentrate, jellies, and sherbets. The mature fruit has a leathery skin and a thin layer of pulp. The seed has oil content [7]. In Nigeria, the fruit is called '*Iyeye*' in Yoruba, '*ngulungwu*' in Igbo and '*isada*' in Hausa. They are pulped, boiled in water, and drunk, or used as a lotion or for baths. The bark is used as a purgative and in local applications for leprosy. The fruit-juice is used as a febrifuge and diuretic. The leaf extract of *S. mombin* displayed an anti-inflammatory effect and suppresses inducible formation of tumor necrosis factor- α and nitric oxide [8]. Over 200 different volatile compounds have been isolated from the fruit pulps [9-11].

MATERIALS AND METHODS

Plant materials

Fresh leaves of *Aspilia africana* were collected from Lagos State University, Ojo, Nigeria, in June 2010, while the leaves of *Lippia multiflora* and *Spondia lutea* were harvested from Ijede Area, Ikorodu, Lagos, Nigeria, in January 2011. The plants were authenticated by Curators at the Herbarium of Botany Department, University of Lagos, Nigeria. Voucher specimens LUH 3224 (*A. africana*), LUH 3320 (*L. multiflora*) and LUH 3324 (*S. lutea*) were deposited at the Herbarium for future references.

Extraction of the essential oils

Air-dried leaves (300g) were subjected to separate hydrodistillation in all-glass Clevenger type apparatus for 4 h in accordance with British Pharmacopoeia method [12]. The plant samples yielded a low content of essential oils: 0.52% (v/w; *A. africana*; yellow); 0.45% (v/w; *L. multiflora*; colourless) and 0.50% (v/w; *S. lutea*; yellow), calculated on a dry weight basis.

Gas chromatography (GC) – and gas chromatography-mass spectrometry (GC-MS).

GC analysis was accomplished with HP-5890 series II instrument equipped with HP-wax and HP-5 capillary columns (both 30 m x 0.25 mm, 0.25 μ m film thickness) with the following temperature programme; 60 °C for 10 min, rising from 5 °C/min to 220 °C. Both injector and detector temperatures were maintained at 250 °C; carrier gas, nitrogen (2 mL/min); detector, FID; ratio, 1:30. The volume injected was 0.5 μ L. The relative proportions of the oil constituents were percentages obtained (% area) by FID peak-area normalisation without the use of response factor.

Gas Chromatography-electron ionization mass spectroscopy (GC-EIMS) analysis was performed with a Varian CP-3800 gas chromatography equipped with a HP-5 capillary column (30 m x 0.25 mm; film thickness 0.25 μ m) and a Varian Saturn 2000 ion trap mass detector. Analytical conditions; injector and transfer line temperature were 220 °C and 240 °C respectively. Oven temperature programmed from 60 °C- 244 °C at 3 °C/min; carrier gas was helium at a flow rate of 1 mL/min; injection of 0.2 μ L (10% hexane solution); split ratio 1:30. Mass spectra were recorded at 70 eV. The acquisition mass range was 30-300 m/z at a scan rate of 1 scan/s.

Identification of the constituents

Identification of the constituents was based on comparison of the retention times with those of authentic samples, comparing their linear indices relative to the series of n-hydrocarbons, and on computer matching against commercially spectral [13]. Further identification were also made possible by the use of self constructed spectral library built up from pure substances and components of known oils and MS literature data [14, 15]. Moreover, the molecular weights of all the identified substances were confirmed by gas chromatography-chemical ionisation mass spectrometry, using methanol as CI ionising gas.

RESULTS AND DISCUSSION

Eighty-three constituents categorised as monoterpene hydrocarbons (26.8%), oxygenated monoterpenes (3.9%), sesquiterpene hydrocarbons (53.6%) and the oxygenated derivatives (11.9%) were identified in *A. africana*. The major compounds of the oil were germacrene D (28.4%), β -caryophyllene (7.5%), caryophyllene oxide (6.0%) and α -humulene (4.3%). α -Pinene (17.1%), β -pinene (4.1%) and methyl carvacrol (2.7%) were the prominent monoterpenes present in the oil (Table1). The composition of the major compounds of this oil was qualitatively similar to previous studies from Nigeria [2] and Cameroon [4], but differs from other reports in the fact that α -cubebene [3] and limonene [4] were identified in insignificant quantities. Therefore the oils of the genus *Aspilia* reported so far in the literature could be classified into different chemical forms as shown in Table 2.

Constituents	LRI ^a	Percentage (%)
α-thujene	931	tr
α-pinene	939	17.1
Camphene	953	tr
thuja-2,4(10)-diene	957	tr
Benzaldehyde	961	tr
Sabinene	976	1.1
β-pinene	980	4.1
6-methyl-5-hepten-2-one	985	tr
Myrcene	991	0.8
α- phellandrene	1005	1.6
α-terpinene	1018	tr
ρ-cymene	1027	0.8
Limonene	1031	1.1
1.8-cineole	1034	tr
(Z)-β-ocimene	1041	tr
Phenylacetaldehyde	1045	tr
(E) - β -ocimene	1051	0.2
v-terpinene	1062	tr
<i>cis</i> -sabinene hydrate	1070	tr
terpinolene	1089	tr
linalool	1009	0.1
nonanal	1103	tr
a-campholenal	1105	tr
trans-pipocarveol	11/0	tr
gejjerene	1140	tr
cis_verbenol	1143	03
pinocaryone	1164	0.5
borneol	1167	tr
4-terpipeol	1179	0.2
n-cymen-8-ol	1185	0.2
a -terpipeol	1100	0.2
myrtenal	119/	0.2
safranal	1200	0.2
decanal	1200	tr
verbenone	1203	tr
ß cyclocitral	1207	0.2
methyl thymol	1219	0.2
cumin aldehyde	1235	u tr
mothyl corvectol	1239	u 27
progoijioropo	1244	0.3
S alamana	1200	0.3
o-elemene	1340	u 0.6
	1331	0.0
cyclosativene	1370	tr
α-ylangene	1372	tr
0. house house a	13/0	1.0
p-bourbonene	1384	0.5
p-cubebene	1390	0.6
p-elemene	1392	1.1
p-caryophyllene	1418	7.5
p-gurjunene	1432	0.3
γ-elemene	1433	0.2
α-guaiene	1439	tr
aromadendrene	1441	tr

Table 1: Essential oil composition of A. Africana

trans-muurola-3,5-diene	1454	tr
α-humulene	1455	4.3
(E) - β -farnesene	1459	tr
cis-muurola-4(14),5-diene	1462	0.2
γ-muurolene	1477	0.5
germacrene D	1480	28.4
β-selinene	1485	0.2
trans-muurola-4(14),5-diene	1492	0.4
bicyclogermacrene	1494	1.6
α-muurolene	1500	0.4
α-bulnesene	1505	0.9
β-bisabolene	1509	0.2
δ-amorphene	1512	tr
trans-γ-cadinene	1513	0.9
δ-cadinene	1524	2.3
trans-cadina-1,4-diene	1532	0.2
α-cadinene	1538	tr
α-calacorene	1542	0.2
germacrene B	1556	0.8
trans-nerolidol	1565	0.3
spathulenol	1576	1.2
caryophyllene oxide	1581	6.0
guaiol	1595	0.3
humulene oxide II	1606	2.0
γ-eudesmol	1632	tr
τ-cadinol	1641	0.4
τ-muurolol	1643	0.2
β-eudesmol	1649	0.2
selin-11-en-4-α-ol	1653	1.1
hexahydrofarnesylacetone	1845	0.2
Total		96.2
Monoterpene hydrocarbons		26.8
Oxygenated monoterpenes		3.9
Sesquiterpene hydrocarbons	53.6	
Oxygenated sesquiterpenes	11.9	

^{*a*} Retention indices on HP-5MS capillary column; tr, trace amount < 0.1%

Table 2:	Chemical	forms	of	essential	oil	of A.	Aj	frican

Table 2: Chemical forms of essential oil of A. Africana					
Chemotype	Species	Major constituents	References		
Oil with abundance of	A. africana	germacrene D (28.4%), α -pinene (17.1%), β -caryophyllene (7.5%)	This study		
caryophyllene	A. africana	germacrene D (15.6%), α -pinene (13.6%), β -caryophyllene (10.8%)	2		
Oil rich in α -cubebene and α -pinene *	A. africana	α -cubebene (13.1%), α -pinene (6.7%), α -thujene/car-3-ene (5.0%)	3		
Oil with high proportions of α -	A. africana var. africana	α-pinene (38.7%), germacrene D (13.8%), limonene (7.5%)	4		
limonene D and	A. africana var. africana	α-pinene (26.5%), germacrene D (24.4%), limonene (9.4%)	4		
Oil with high amounts of	A. africana var. africana	germacrene D (45.0%), β-caryophyllene (8.7%), limonene (7.1%)	4		
and limonene	A. africana var. africana	germacrene D (54.2%), β-caryophyllene (13.2%), δ-cadinene (8.2%)	4		
Oil rich in limonene, α -pinene and germacrene D	A. africana var. ambigua	limonene (23.2%), α-pinene (21.8%), germacrene D (6.7%)	4		

*Very unusual constituents

Constituents	LRI ^a	Percentage (%)
α-thujene	931	0.4
α-pinene	939	1.1
camphene	953	tr
sabinene	976	13.0
β-pinene	980	4.0
myrcene	991	tr
octanol	993	0.2
α-phellandrene	1005	tr
δ-3-carene	1011	tr
q-terpinene	1018	0.7
<i>p</i> -cymene	1027	0.6
limonene	1031	1.0
1 8-cineole	1034	0.2
a-terpipepe	1062	1.1
<i>cis</i> -saninene hydrate	1070	1.1
terninolene	1070	3.1
trans-sabinene hydrate	1009	1.0
aro-fenchol	1117	0.3
cis n menth 2 en 1 ol	1122	0.3
trans n month 2 on 1 ol	1122	0.2
isobornool	1142	u tr
4 terminaci	1170	u 2.5
	11/0	5.5
<i>p</i> -cyllien-8-01	1100	0.2
	1190	0.2
trans-piperitol	1207	tr
geranial	1272	tr
α-copaene	13/6	tr
β-elemene	1391	0.2
(Z)-caryophyllene	1405	tr
β-caryophyllene	1418	21.8
(E) - α -1000ne	1428	tr
<i>trans</i> - α-bergamotene	1439	2.3
α-humulene	1455	1.6
allo-aromadendrene	1461	tr
6-demethoxy-ageratochromene	1463	0.3
β-chamigrene	1475	tr
germacrene D	1480	tr
β-selinene	1485	1.6
bicyclogermacrene	1494	3.1
α-bulnesene	1505	0.3
β-sesquiphellandrene	1524	tr
spathulenol	1576	2.6
caryophyllene oxide	1581	4.3
viridiflorol	1590	tr
humulene epoxide II	1606	0.2
humulane-1,6-dien-3-ol	1611	0.8
γ-eudesmol	1632	tr
τ-cadinol	1641	tr
selin-11-en-4-α-ol	1653	1.8
8-cedren-13-ol	1689	1.4
<i>trans</i> - α-bergamotol	1691	0.5
isopimara-9(11),15-diene	1899	0.2
rimuene	2018	14.6

Table 3: Compounds identified in the essential oil of L. multiflora

abietatriene	2054	7.1
abietadiene	2080	1.8
Total		98. 7
Monoterpene hydrocarbons		25.0
Oxygenated monoterpenes		7.0
Sesquiterpene hydrocarbons		30.9
Oxygenated sesquiterpenes		11.8
Diterpenes		23.5
Others		0.5

^{*a*}Retention indices on HP-5MS capillary column; tr, trace amount < 0.1%

Constituents	LRI ^a	Percentage (%)
3-methyl-2-hexanone	844	0.6
(E)-2-hexenal	854	1.0
α-pinene	939	0.4
benzaldehyde	961	0.9
β-pinene	980	0.3
6-methyl-5-hepten-2-one	985	0.5
2-pentyl furan	995	1.2
<i>n</i> -decane	1000	0.6
α-terpinene	1018	0.5
<i>o</i> -cymene	1022	1.2
<i>p</i> -cymene	1027	2.2
limonene	1031	0.5
1,8-cineole	1034	0.3
(Z)-β-ocimene	1041	tr
(E) - β -ocimene	1051	tr
γ-terpinene	1062	0.5
<i>cis</i> -linalool oxide (furanoid)	1075	tr
dehvdro- <i>p</i> -cymene	1088	1.4
linalool	1099	0.5
nonanal	1103	0.5
1,3,8- <i>p</i> -menthatriene	1112	tr
<i>p</i> -mentha-1,5-dien-8-ol	1166	tr
4-terpineol	1178	0.4
naphthalene	1180	tr
p-cymen-8-ol	1185	tr
α-terpineol	1190	tr
methyl salicylate	1192	tr
<i>cis</i> -piperitol	1195	0.6
β-cyclocitral	1219	0.8
neral	1240	5.1
geranial	1272	10.6
1,2-dihydro-1,1,6-trimethyl naphthalene	1354	0.4
α-ylangene	1372	0.3
α-copaene	1376	0.7
geranyl acetate	1385	0.6
(Z)-caryophyllene	1405	0.3
β-caryophyllene	1418	19.0
γ-elemene	1433	1.7
<i>trans</i> - α-bergamotene	1439	0.7
aromadendrene	1441	0.6
(E)-geranyl acetone	1453	1.2
α -humulene	1455	3.8

6-demethoxyageratochromene	1463	0.4
γ-muurolene	1477	3.7
germacrene D	1480	1.0
β-selinene	1485	1.9
(E) - β -ionone	1488	1.2
valencene	1491	2.7
<i>cis</i> -β-guaiene	1493	0.4
α-muurolene	1499	2.3
trans-y-cadinene	1513	2.3
δ-cadinene	1524	4.6
α-cadinene	1538	0.5
α-calacorene	1542	1.2
spathulenol	1576	0.3
caryophyllene oxide	1581	5.6
humulene oxide II	1606	1.0
τ-cadinol	1641	0.5
α-cadinol	1653	0.8
pentadecanal	1717	0.8
abietatriene	2054	1.2
Total		94.9%
Monoterpene hydrocarbons		7.0
Oxygenated monoterpenes		22.7
Sesquiterpene hydrocarbons		48.7
Oxygenated sesquiterpenes		8.2
Diterpenes		1.2
Aliphatic		4.0
Aromatic		2,5
Others		0.4

^{*a*} Retention indices on HP-5MS capillary column; tr, trace amount < 0.1%

Table 3 revealed the identities of the fifty-six compounds identified in the oil of *L. multiflora*. The major components were rimuene (14.6%), a diterpene; β -caryophyllene (21.8%), a sesquiterpene and the monoterpene, sabinene (13.0%). There were significant quantities of abietatriene (7.1%), caryophyllene oxide (4.3%) and β -pinene (4.0%). Considering the major constituents, literature information revealed that *L. multiflora* exhibited intraspecific variation in its oil composition. Though sabinene and β -caryophyllene as found in this oil sample have been reported as major compounds of *L. multiflora*, the occurrence of rimuene or any diterpenes is uncommon. Hence, the rimuene/ β -caryophyllene/sabinene chemotype described in this report has is uncommon [5, 6]. The commonly reported compounds such as thymol, 1, 8-cineole, tagetone, geranial, *p*-cymene, nerolidol etc were either conspicuosly absent or occurred in low amounts in the present investigation.

From Table 4, it could be seen that terpenes were the major constituents of *S. lutea*. The classes of compounds occurring in higher amounts were oxygenated monoterpene (22.7%) and sesquiterpene hydrocarbons (48.7%). The main compounds were β -caryophyllene (19.0%) and geranial (10.6%). Other significant constituents of the oil were caryophyllene oxide (5.6%), neral (5.1%), δ -cadinene (4.6%), α -humulene (3.8%) and γ -muurolene (3.7%). Over 200 different volatile compounds have been isolated and characterized from the fruit pulps [9-11]. Previously (*E*)-caryophyllene (18.7%), ethyl butyrate (10.0%); myrcene (41.1%), β -phellandrene (8.5%) and ethyl hexanoate (4.9%); (*Z*)-caryophyllene (13.2%), limonene (9.5%) and ethyl hexanoate (6.2%); myrcene (38.0%), ρ -cymene (6.2%) and α -terpineol (5.1%) were the main compounds of *S. lutea* [10]. In another report, butanoic acid, ethyl 3-hydroxybutanoate, butyl butanoate and butyl 3-hydroxybutanoate were the compounds identified in higher proportions [11]. However, terpenic esters and acids could not be identified in the present oil sample.

CONCLUSION

The volatile oil of *L. multiflora* afforded a new chemotype which has not been described previously. Each volatile oil exhibited differing chemical constituents which may be attributed to several factors such as ecological and climatic conditions, age of the plant, variety etc.

Pelagia Research Library

REFERENCES

[1] M.M. Iwu; Handbook of African Medicinal Plants, CRP Press: Boca Raton, Florida, 1993.

[2] A.A. Gbolade, A. Dzamic, P.D. Marin and M. Ristic, J. Essent. Oil Res., 2009, 21, 348-350. (and references cited therein)

[3] L.A. Usman, I.A. Oladosu, N.O. Olawore, C.O. Fakunle, A.A. Hamid and A. Lawal, *J. Med. Plant Res.*, **2010**, 4, 346-348. (and references cited therein)

[4] J.-R. Kuiate, P.-H. Amvam Zollo, G. Lamaty, C. Menut and J.-M. Bessière, Flav. Fragr. J., 1999, 14, 167–169.

[5] M.S. Owolabi, A.L. Ogundajo, L. Lajide, M.O. Oladimeji, W.N. Setzer and M.C. Palazzo, *Rec. Nat. Prod.*, 2009, 3, 170-11.

[6] I.H.N. Bassole, A. Lamien-Meda, B. Bayala, S. Tirogo, C. Franz, J. Novak, R.C. Nebie and N.H. Dicko, *Molecules.*, **2010**, 15, 7825-7839.

[7] F.R. Irvine; Woody Plants of Ghana, Oxford University Press, Great Britain, 1961. p. 565-566.

[8] C.S. Nworu, P.A. Akah, F.B. Okoye, D.K. Toukam, J. Udeh and C.O. Esimone, *J. Immunotoxicol.*, **2011**, 8, 10-16.

[9] G. Allegrone and M. Barbeni, Flav. Fragr. J., 1992, 7, 337-342.

[10] P.M.N. Ceva-Antunes, H.R. Bizzo, S.M. Alves and O.A.C. Antunes, J. Agric. Food Chem., 2003, 51, 1387–1392.

[11] F. Augusto, A.L.P. Valente, E.T. dos Santos and S.R. Rivellino, J. Chromatogr., 2000, 873, 117-127.

[12] British Pharmacopoeia, H.M. Stationary Office Vol II. 1980.

[13] R.P. Adams; Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured, Carol Stream, **1995**.

[14] D. Joulain and W. A. Koenig; The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. E. B. Verlag, Hamburg, Germany, **1998**.

[15] S.R. Heller and G.W.A. Milne; EPA/NIH Mass Spectral Data Base, U.S. Government Printing Office, Washington D.C. **1978**, **1980**, **1983**.