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Abstract

Neurotrauma from blast exposure is one of the single
most characteristic injuries of modern warfare.
Understanding blast traumatic brain injury is critical for
developing new treatment options for warfighters and
civilians exposed to improvised explosive devices.
Unfortunately, the pre-clinical models that are widely
utilized to investigate blast exposure are based on archaic
lung based parameters developed in the early 20th
century. Improvised explosive devices produce a different
type of injury paradigm than the typical mortar explosion.
Protective equipment for the chest cavity has also
improved over the past 100 years. In order to improve
treatments, it is imperative to develop models that are
based more on skull-based parameters. In this mini-
review, we discuss the important anatomical and
biochemical features necessary to develop a skull-based
model.

Keywords: Blast traumatic brain injury; Skull-based
scaling; Clinically relevant models; Anatomical correlates;
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Introduction
Blast traumatic brain injury (bTBI) has been deemed the

hallmark of modern warfare [1]. Unfortunately, limited
treatment options exist to help warfighters who sustain bTBIs
during conflict. In order to improve treatment options, it is
imperative that pre-clinical models be designed to emulate
real-time injury as closely as possible (Figure 1). The current
models are primarily based off of lung-based scaling
parameters developed back in the early 20th century [2].
Modern day improvised explosive devices however produce a
different type of injury than the mortar shell explosions typical
of the World Wars. In this mini-review, we discuss the relevant
parameters for switching from lung-based scaling to the more
relevant skull base metrics. By establishing better models

going forward, it will be possible to better test pharmaceutical
treatments that will directly help patients with bTBI.

Figure 1: Converting models to skull-based parameters will
improve clinical relevance.

Anatomical Features
A recent literature review of blast exposure reports that

19.6 to 40% of victims, depending on the study, have injuries
to the face [3]. Concurrent evidence from a porcine model also
shows that face injury is common [4]. Head on blast exposure
that injures the face in humans causes wave propagation
through surrounding tissue into the brain [5]. Evidence of wave
collision with the brain can be measured by increased
intracranial pressure [6]. Singh and colleagues have shown that
the location of exposure changes the extent of wave
propagation into the brain [7]. The wave also dissipates as is
travels throughout the brain indicating some intrinsic
resistance [8]. Head orientation is also directly correlated with
intracranial pressure changes following blast [9]. It is therefore
imperative that when designing scaled blast models important
variables should be addressed including distance from
exposure, intensity of exposure, and location of primary

Research Article

iMedPub Journals
http://www.imedpub.com/

Journal of Surgery and Emergency Medicine
Vol.1 No.1:3

2017

© Copyright iMedPub | This article is available from: http://www.imedpub.com/surgery-and-emergency-medicine/ 1

mailto:bwold@mix.wvu.edu
http://www.imedpub.com/
http://www.imedpub.com/surgery-and-emergency-medicine/


impact [10]. Below we discuss scaling principles in accordance
to anatomical features. We begin at the macroscopic level with
consideration for the skull, brain, cerebrospinal fluid, and
vasculature. The discussion progresses to a focus on the role of
cell types in scaling including neurons, glia, and endothelial
cells.

Skull dynamics
Characteristics of the skull tend to be more variable

between species, particularly in regard to morphology and
shape. For this reason, other skull characteristics must be
considered when selecting the appropriate animal model to
represent human skulls. It is most widely agreed that bone
mineral density is the most important characteristic due to its
direct correlation to bone elasticity and strength [11]. A recent
study by Jean and colleagues investigated stress wave
transmission through the skull interface of three species:
mouse, pig, and human. They found distinct patterns of
transmission based on skull density that correlated with
observed spikes in intracranial pressure [12]. Other
characteristics to consider are skull cavity volume, skull
geometry, age, and structure [13,14]. Selection of an animal
model with similar attributes to human bone density is
required to be most accurate and clinically relevant. Studies
show that the rabbit skull is the least comparable model to the
human skull, with non-human primates being optimal [11].
Due to ethical and resource limitations, rodent models have
emerged as the most feasible. Rodent models have many
advantages such as low cost, ease of use, and available access.
For scaling based on skull density, blast and shock waves must
have low-amplitude and short duration for rodent models [2].
It is also important to consider the intensity of blast exposure.
High-pressure and long-duration exposures can more readily
transverse the bony cavity of the skull, but will not
appropriately scale based on injury severity [15].

Cerebral spinal fluid space
In order to understand injury expansion, extended research

must focus on skull flexure and how it influences cerebral
spinal fluid (CSF) post-blast in different models [16]. Recent
evidence suggests that volume fractions vary between
locations following blast exposure indicating multiple sites of
pia-arachnoid complex disruption [17]. Detecting these areas
of specific change is vitally important in understanding injury
severity. Blast TBI is often associated with acceleration and
subsequent deceleration of the brain and skull. The CSF
responds differently than the brain to this rapid change in
momentum due to its unique density gradient. The
momentary lack of CSF cushioning allows the brain to collide
with the skull [18]. Similar coup and contra coup effects have
been observed in animal models including rhesus monkeys
and rats [19,20]. Increasing the use of high throughput imaging
modalities may enhance the ability to detect acute changes to
the cerebral spinal fluid space following injury [21]. The
transmission of the wave through the CSF has been linked to
cavitation at the contra coup site of injury [22]. Finite element

modeling may be useful in predicting cavitation and CSF
dynamics for different animal models of blast TBI [8].

Brain size and architecture
White and Gray matter delineation are conserved across

mammals. Even whales have similar axonal shearing following
blast due to acceleration/deceleration forces [23]. The key
components of interest for appropriate scaling are hierarchical
neuroanatomy and metabolism [24]. In veterans, cortical
thickness is significantly altered following blast exposure [25].
Areas consistently disrupted in human blast exposure are the
prefrontal cortex and hippocampus [26]. The change in brain
volume affects fluid-structure interactions [27]. In order to
maintain clinical relevance, deformation of tissue due to
pressure differences following blast must be consistent with
scaling [28]. It was recently shown that when the top of a rat’s
head is facing the shock tube, skull flexure produces similar
changes in intracranial pressure in the prefrontal cortex as that
seen in human blast exposure [9]. The deformation of tissue
was therefore conserved across species. Likewise, blast
exposure in Macaca monkeys caused increased ICP that
significantly damaged hippocampal cells and Purkinje neurons
[29]. Although the use of non-human primates is ideal, the
cost limitations and ethical considerations are prohibitive. In
scaling for rodent models the key is using small blast tubes,
which can focus the wave to more region specific areas of
interest [15]. Finite element modeling done with computer
simulation can be used to determine the peak pressure
needed for deformation of tissue [30]. Tabletop blast models
produce the short duration peak pressures necessary for
sufficient scaling and are more reliable between trials than
larger models [31].

Vascular considerations
Because the brain has such a high demand for nutrients and

oxygen, an extensive vascular network exists within the brain
of all mammals. Brain tissue across all species have similar
metabolic demands, therefore capillary length and ratio to
cortical neurons will be conserved across mammalian species
to provide the same demands for blood flow [32]. It is
therefore assumed that the brain vasculature of a rodent,
mouse, or rat would be an acceptable option for scaling with
human vasculature. Blast can cause disruption of the
vasculature, especially at the level of the blood brain barrier
[33]. Thoracic exposure leads to a surge in venous pressure
that contributes to chronic inflammation [34]. Blood vessels
are susceptible to blast injury due to enhanced wave
transmission through different density gradients [35]. Fluid/
solid coupling algorithms can be used to map the temporal
distributions of pressure across larger vessels following blast
[36].

Capillary differences are also of interest in comparing
mammalian species. Circulatory shock is common following
blast exposure. The mismatch in ventilation/perfusion is
prominently expressed at the capillaries where metabolic
exchange occurs [37]. Damage to the endothelium of
capillaries has been reported following blast exposure [38].
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The damage can be indirectly observed through iron deposits
in the parenchyma [39]. In addition to injury itself, other
characteristics must be considered for appropriate scaling
including capillary diameter, aging of vessel, endothelial cell
and myocyte size differences between species, and coronary
pressure. All of the aforementioned characteristics may vary
between species [40]. For example, in humans, age leads to a
widening of capillary diameter [41], but in rodents, age leads
to a narrowing of capillary diameter [42]. Variability may be
adjusted and accounted for with normalization to size, weight,
or age using carefully organized mathematical equations.

Red blood cells
The mean size of RBCs in humans is 9.65 microns. The

smallest capillary is 4 microns meaning that RBCs must fold to
fit through the capillary lumen [43]. Following blast injury, red
blood cells can become structurally damaged limiting their
ability to fit through the capillary lumen. The result is
increased risk for hemorrhage and a drop in mean arterial
pressure [44]. Post injury transfusions are often necessary
following combat related blast injury to restore metabolic
exchange [45]. Rats and humans have similar capillary
diameters making rodent models viable for scaling [46].
Mammalian species often have different shapes of RBCs
causing change in flow rate [47]. In rats unlike humans, RBCs
decrease in size with age allowing more successful folding in
young adult animals than neonatal animals [48]. The low-shear
viscosity of young-adult rodent blood has similar dynamics to
human blood despite aggregation being slightly different
between the species [49,50]. The key similarity is that rat
models have similar multifoci microhemorrhages following
blast exposure, which is also seen in humans [51]. Not
surprisingly, hemin, a heme oxygenase 1 activator, decreased
injury severity when administered post-blast [52]. This finding
indicates that red cell rupture is necessary for appropriate
scaling in blast injury.

Neurons
Neural tissue properties are more variable across species.

Rodents gain white matter at a faster rate than primate species
although relative neuronal density in gray matter is
comparable [53]. Despite differences in neuron size and axonal
connections between mammals, the cranial volume to brain
volume ratio typically scales to the animal’s body size [54]. Age
is a key factor to consider as well. Aging typically results in
shrinkage of brain volume, so the appropriate age of the
animal must be selected for translational studies. Also, as
rodent’s age the brain gets larger but in aged humans the brain
tends to shrink [55]. Blast injury in larger mammals results in
periventricular and hippocampal damage [56]. The damage in
rodents is found primarily within the cortex and white matter
tracts. Occasionally neurons in the hippocampus become
damaged resulting in abnormal function [57]. Despite
differences in injury foci, neurons respond equally to injury
across species by swelling and forming vacuoles [15]. A
comparable amount of neuronal death also occurs across
species [58]. Another important factor is that basal metabolic

rate conservatively scales across mammalian species according
to body size, indicating the same cellular needs and energy
expenditure [32]. Basal metabolic rate supports the use of
mice as an affordable and practical model. DNA methylation
rates are likewise similar between rodents and humans
suggesting the validity of scaled models [59].
Neurodegeneration can occur at comparable rates between
species, and higher severity of blast has been associated with
α-spectrin disruption in mice similar to the disruption seen in
humans [60]. Of particular importance is the change within
mitochondria post-blast. Mitochondrial dysfunction is common
post-blast in mice, and recent human data supports disrupted
mitchondria function as a mechanism of injury as well [61,62].
Select neuronal mitochondria genes are conserved between
species indicating that the neuron may be an ideal cell to
compare similar injury pathways across species [63].

Glia (astrocytes and microglia)
During injury, mouse brain tissue may behave similarly to

human tissue. Inflammatory responses in both humans and
mice can be activated by the release of similar chemokines
[64]. Injury also leads to similar activation of glial cells,
including astrocytes and microglia [65]. Because this reaction
to neural injury has been shown to be similar in humans and
mice, it can be further assumed that mice may be valuable for
a translational model. Rats also have similar responses to
humans. GFAP, a marker for astrocytosis, has been elevated
within the rat hippocampus following blast exposure [66].
Astrocytosis and subsequent behavioral disturbance is most
pronounced in rats at blast wave pressures greater or equal to
117 kPa [67]. Rat models show that astrocytic foot processes
surrounding the blood brain barrier (BBB) swell following blast
injury indicating damage [68]. Astrocytosis also plays an
important role in human blast pathophysiology [69]. It may
contribute to long-term degenerative disease such as chronic
traumatic encephalopathy [70]. In humans, an acute response
to blast exposure is often loss of consciousness. In rats, this
transient response can be measured by loss of righting reflex.
The loss of righting reflex is accompanied by microglia
activation measured with IBA1 [71]. Similar microgliosis was
observed in rats using the CD11b/c antibody. Activated
microglia was found adjacent to areas of BBB disruption within
the cortex [72]. Similar to humans, the pineal gland in rat
serves as an exquisite sensor for microglia activation following
neural injury [73]. Extended neuroinflammation mediated by
microglia activation has been linked to cognitive decline in
humans [74]. Understanding the mechanism of persistent
microglia activation following axonal shearing, warrants the
use of appropriately scaled rodent blast models [75].

Endothelial cells
Blast exposure can disrupt tight junction proteins that

interconnect endothelial cells [76]. The disruption is mediated
by a vascular pressure surge and subsequent oxidative stress
[33]. In vitro modeling has proved beneficial in detecting
changes to endothelial cells post-blast. Findings suggest that
damage occurs acutely and persists over a few days [77]. The
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decrease in trans-endothelial electrical resistance is the result
of the impulse transmitted instead of peak overpressure [78].
The use of in vitro modeling also enables blast to be directed
to hippocampal slice sections allowing focused investigation
into the vasculature in this area [79]. Another important
consideration is that 30-80% of blast exposures result in some
type of infection. The BBB is the primary defense for the brain
and therefore disruption leads to increased risk for exposure
to bacterial toxins [80]. Animal models allow focused
investigation into the biochemical dynamics surrounding
endothelial cells post-injury. Bacterial endotoxin has been
shown to increase intracellular adhesion molecule 1
expression on endothelial cells post-injury allowing an influx of
leukocytes [81]. Additionally, lipopolysaccharide can trigger an
increase in adipokine genes following TBI [82]. In rabbits, the
changes that occur to endothelial cells produce robust
hemoconcentration post-blast [83]. Hemoconcentration has
also been reported in sheep post-blast, which severly limits
metabolic exchange and the clearance of toxins [84]. The use
of appropriately scaled models will help elucidate these
complex interactions that occur from endothelial cell damage
post-blast.

Biomarkers
Biomarkers have recently emerged as an important indicator

of traumatic brain injury. Immediately following TBI in a
porcine model, a panel of markers was increased in the CSF.
These markers included neurofilament heavy chain, von
willebrand factor, glia fibrillary acidic protein, brain-specific
creatine kinase, and neuron-specific enolase [85]. Of particular
importance are metabolomic biomarkers because they are
altered following TBI in humans [86]. Metabolomic biomarkers
must be similar between species exposed to injury to confirm
that blast causes replicable and scaled injury [87]. Changes in
blood flow drastically alter metabolic output [88]. The larger
the brain volume the more metabolic capacity it has [32].
Metabolomic markers of interest for mammals include
ascorbate, glutamate, phosphocoline, and N-acetylaspartate
[89]. Another pathway of interest is neuroinflammation.
Interleukin-5 offers to be a promising biomarker that is
similarly elevated in CSF post-blast in multiple species [90].
Levels of interleukin-1a and erythopoietin have been shown to
change in the CSF following blast in rodents, but further
validation must be performed in human samples [91]. The
vascular space often provides an appropriate venue to sample
biomarkers. Changes in small nucleolar RNA within blood
components is an important indicator of blast injury and may
help indicate the progression towards neuropsychiatric disease
in veterans [92]. Tau and TNFα changes are also detectable in
serum and can offer acute sensitivity for acute injury [93]. DNA
fragmentation is detectable in plasma and has been validated
in a mouse blast model [94]. Scaled animal models offer an
ideal option to screen potential biomarkers, which can then be
validated in humans using multimodal magnetic resonance
imaging [95].

Conclusion
Moving forward, pre-clinical models will need to be based

on skull-based parameters. In this mini-review, we discussed
relevant features for scaling such as brain and skull anatomy,
vascular considerations, and differences in response based on
cell type. We highlighted relevant biomarkers that could be
used to determine the appropriate outcomes of scaled pre-
clinical models. By switching to skull-based models we will be
better able to develop appropriate treatment options for
warfighters. Skull-based models will provide the scientific
community a better understanding of brain injury from blast
exposure.
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