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Mini Review

Bayesian Methods for Imaging Genetics

Abstract
The analysis of combined neuroimaging and genetic data has tremendous 
potential for advancing our knowledge on how genetics relate to brain structure 
and brain function and how this relationship might modulate disease. This poses 
great challenges for data analytics as both neuroimaging and genetic data are high-
dimensional and the models that describe their relationship can involve millions 
of parameters. Bayesian approaches for imaging genetics have been developed 
to accommodate prior information on the relationship between neuroimaging 
endophenotypes and genetic variants while allowing for flexible statistical 
modelling structures. These include joint probabilistic frameworks for imaging, 
genetic and disease data and hierarchical models for relating neuroimaging and 
genetic data while accounting for spatial dependence in the data. The Bayesian 
framework allows naturally for the characterization of posterior uncertainty and 
inference which is an advantage over sparsity-based methods that emphasize 
point estimation. A substantial challenge associated with Bayesian methods within 
the context of imaging genetics however is the computation required for posterior 
approximation over a parameter space of high dimension. This article reviews 
recent work in this area of data analytics and outlines some challenges and future 
opportunities.
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Introduction
Bayesian approaches for imaging genetics have been developed 
to accommodate prior information on the relationship between 
neuroimaging endophenotypes and genetic variants while 
allowing for flexible modelling structures. These include joint 
probabilistic frameworks for imaging, genetic and disease data 
[1,2] and hierarchical models for relating neuroimaging and 
genetic data while accounting for spatial dependence [3,4]. The 
Bayesian framework allows naturally for the characterization of 
posterior uncertainty and inference which is an advantage over 
sparsity-based methods that emphasize point estimation. A 
substantial challenge associated with Bayesian methods within 
the context of imaging genetics however is the computation 
required for posterior approximation over a parameter space 
of high dimension. A Bayesian reduced rank model for relating 
imaging data to genetic markers that enables characterization of 
uncertainty for the regression parameters based on the posterior 
distribution while reducing the dimension of the regression 
coefficient matrix with a low rank approximation is developed 
in [5]. The model also incorporates a sparse latent factor 
structure for the covariance matrix of the neuroimaging data 

with a multiplicative gamma process prior assigned to the factor 
loadings. This low rank model is extended [6] to accommodate 
longitudinal imaging data through a random effects model where 
the regression structure allows for gene-age interactions so that 
the genetic effects on Region of Interest (ROI) volumes can vary 
across time [6] the author focus on longitudinal neuroimaging 
trajectories from a single region of interest obtained for a 
collection of subjects and use basis functions to model longitudinal 
trajectories of Magnetic Resonance Imaging (MRI) derived 
cortical volumes in neurodegeneration. The coefficients of the 
basis for individual subjects are assigned multivariate Gaussian 
priors with a covariance matrix that is based on biomarker kernels 
that allow for information sharing across subjects leading to a 
multi-task framework. The biomarker kernels allow for coupling 
of the trajectories across subjects based on APOE genotype, 
cerebrospinal fluid and amyloid Positron Emission Tomography 
(PET) based biomarkers. Develop a Bayesian multivariate linear 
model for relating an imaging response to genetic markers 
extending the group sparse multi-task regression and feature 
selection estimator developed by [7], to a setting allowing for 
fully Bayesian inference. The regression model is E(yl)=WT xl, l=1, 
. . . , n, where yl where yl is the c-dimensional imaging response 
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and xl is a d-dimensional vector of genetic markers for subject l. 
Following the ideas of Park and Casell [8] develop a hierarchical 
model with a nested group lasso prior, where the grouping 
structure is at both the SNP and gene levels.

Imaging Genetics Studies
Letting W(k) =(wij) denote the mk ×c submatrix of W containing the 
rows corresponding to the kth gene, k = 1, . . . , K, and where mk is 
the number of SNPs included from gene k. The hierarchical model 
takes the form 
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This product Laplace density can be expressed as a Gaussian 
scale mixture which allows for the implementation of Bayesian 
inference using a standard Gibbs sampling algorithm. The 
algorithm is implemented in the R package bgs mtr which is 
available for download on the Comprehensive R Archive Network 
(CRAN). In [9] the regression modelling framework is extended 
to allow for a more flexible covariance structure for modelling 
neuroimaging data by allowing for two forms of correlation seen 
in structural brain imaging data. 

First, the model allows for spatial correlation in the imaging 
endophenotypes obtained from neighbouring regions of the brain 
or more generally on a graph linking the imaging endophenotypes 
on the same brain hemisphere. Second, the model allows for 
bilateral correlation between corresponding measures on 
opposite hemispheres of the brain. This joint spatial structure is 
based on a Bivariate Conditional Autoregressive Model (BCAR) 
[10]. The model relating the imaging and genetic data at the first 
level then takes the form
 ( ) 1| W ( ),  ,  ,T
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where A is a neighbourhood matrix imparting within-hemisphere 
spatial structure across regions, Ai is the ith row sum of A, DA=diag 
{Ai., i=1, ..., c/2}, ρ is a spatial dependence parameter, and Σ is 
a 2-by-2 matrix accounting for bilateral correlation across the 
brain. The prior for W is similar to the Gaussian scale mixture 
considered in [7] and formulated to encourage shrinkage at the 
SNP level across all neuroimaging endophenotypes. The prior 
additionally incorporates a bivariate structure for the regression 
coefficients corresponding to bilateral pairs of neuroimaging 
endophenotypes and their association with a given SNP. The 
spatial model is implemented using both a mean-field variational 
Bayes approximation to the posterior distribution as well as 
Markov Chain Monte Carlo (MCMC) sampling. The variational 
Bayes approximation is obtained by maximizing the evidence 
lower bound using coordinate ascent and is relatively fast 
and can be used to obtain an initial glance at the data as well 
as to initialize the MCMC sampler. Posterior samples are then 
used in conjunction with Bayesian FDR for SNP selection, [11] 

develop a novel regression approach based on a semiparametric 
conditional graphical model for imaging genetics that is developed 
to infer genetic associations on multivariate neuroimaging 
endophenotypes while simultaneously inferring functional brain 
connectivity [11]. Prior distributions on the regression coefficients 
in the multivariate regression are based on a generalization of a 
Dirichlet process mixture of Laplace distributions which facilitates 
clustering of the regression coefficient vectors corresponding to 
individual imaging outcomes into groups. Each individual group is 
treated as a module in a functional modular network. Conditional 
on the clustering defining the modules the covariance matrix is 
assigned a semiParametric hyper inverse-Wishart prior defined 
over a graph with edge structure depending on the clustering 
and hyperpriors chosen so that the resulting graph has a higher 
density of edges within modules and a lower density of edges 
connecting modules. An MCMC algorithm is developed to infer 
the brain network and genetic associations simultaneously [12]. 
Develop a regression approach that is amenable to handling 
voxel-specific imaging endophenotypes. The approach is based 
on partitioning the brain into regions of interest and treating 
the imaging response obtained at all voxels within each ROI 
independently. Thus a separate multivariate regression model 
relating imaging measures collected over voxels onto genetic 
variants is considered at each ROI and the approach is applied to 
all ROIs in parallel. At each ROI generalized principal component 
analysis is used to project the response to a lower dimension and 
the projected response is then related to genetic variants using a 
linear model combined with Bayesian model averaging to account 
for the collection of models that arise from inclusion/exclusion 
of each individual covariate. A uniform prior is placed over the 
model space and a g-prior is assigned to the vector of regression 
coefficients conditional on the model sample from the posterior 
distribution over the model space and regression coefficients, 
characterizing the relationship between the projected imaging 
response and genetic variants using MCMC. The authors then use 
a reverse projection to map the sampled regression parameters 
defined over the dimension-reduced space obtained from GPCA 
to the original space of voxels within ROIs. 

Discussion
As an alternative to regression modelling relating preselected 
neuroimaging endophenotypes to genetic variants [12] develop 
a Bayesian probabilistic framework for jointly modelling disease, 
neuroimaging and genetic data. The joint modelling of imaging, 
genetics and disease is a novel aspect of this Bayesian approach. 
The approach is based on a joint model with two primary regression 
specifications, the first being a logistic regression relating a binary 
disease response to image features and the second relating the 
imaging features to the genetic variants. The logistic regression 
is then extended to a more flexible Gaussian process logistic 
regression. A key aspect of the hierarchical framework is the 
use of spike-and-slab priors at two nested levels which serve to 
stochastically couple the disease-imaging and imaging-genetic 
regression models. At the first level, latent selection variables in 
the logistic regression encode which components of the imaging 
feature are related to disease while at a second level, selection 
variables encode which genetic variants are related to specific 
imaging features, conditional on the selection variables at the 

© Under License of Creative Commons Attribution 3.0 License  



3© Under License of Creative Commons Attribution 3.0 License

2021
Vol. 4 No. 4: 01

Journal of Brain Behaviour and Cognitive Sciences

first level indicating that a specific feature is related to disease. 

Conclusion
While the development of Bayesian methods for imaging 
genetics has seen steady development there is tremendous 
scope for further work. A pressing issue is the development of 
computational methods for implementing Bayesian methods that 
are able to scale in this context while maintaining a reasonable 
degree of accuracy. The potential of divide and conquer sampling 
approaches such as the likelihood inflated sampling algorithm 
and further investigation of variational methods and the 
combining of variational methods with stochastic approximations 
may be promising avenues of investigation. In addition, further 
development of semiparametric Bayesian methods along the 
lines investigated by  are also important lines of further 
development.

Inference on these latent variables can reveal how different 
components of the imaging endophenotypes relevant to disease 
are related to each of the genetic variants, thus revealing the 
spatial distribution. With spike-and-slab priors nested at two levels 
in high-dimensions the implementation of Bayesian inference 
is challenging and the authors combine variational Bayes with 
stochastic approximations to simultaneously infer on the genetic 
variants and imaging features associated with disease. The ability 
to conduct simultaneous inference considering disease, imaging 
and genetics jointly is an important advantage of this approach.
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