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Introduction
As an ancient domesticated crop, rice (Oryza sativa L.) is the 
staple food and source of daily calories for nearly half of the 
global population [1]. Sustainable rice production is important 
for safeguarding world food security. However, diseases caused 
by diverse pathogens pose a significant threat for rice production 
worldwide [2]. The bacteria specific BB resistance (R) genes  
oryzae pv. oryzae (Xoo) caused rice bacterial blight (BB), is one of 
the most devastating diseases in rice, which can lead to huge yield 
loss [3,4]. Xoo invades rice leaves typically through hydathodes 
and/or wounds and multiply in leaf veins and xylem causing 
blockage and plant wilting [5]. At the cellular and molecular level, 
Xoo is capable of injecting Transcription-Activator Like Effector 
(TALE) proteins into the host plant cells depending on the type 
III (T3S) secretion system like other plant pathogenic bacteria 
of the genus Xanthomonas [6]. Once in the plant cell, TALEs 
enter the nucleus and bind to Effector Binding Elements (EBEs) 
in a sequence‐specific manner and transcriptionally activate 
host genes, leading to susceptibility or resistance [7]. Due to 
its scientific and economic importance, Xoo has been ranged as 
top 10 plant bacterial pathogens [8]. Over the last two decades, 
rice genetic resistance to BB and rice-Xoo interactions have been 
extensively studied. To date, nearly 46 race-specific BB resistance 
(R) genes to different Xoo races derived from cultivated, wild 
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Abstract
Bacterial Blight (BB), caused by gram-negative bacteria Xanthomonas oryzae pv. 
oryzae (Xoo), is one of the major constraints for rice production across the world. 
For decades, a series of rice resistance (R) genes against BB have been identified 
and extensively used in breeding for resistance. However, the existence and 
emergence of new virulent Xoo populations or strains always make the resistant 
varieties short-lived. Deep understanding of the molecular mechanisms of R gene-
mediated resistance is important for effective deployment of R genes. In this 
mini review, we summarized the advances in identification and characterization 
of BB R genes, molecular interactions between rice and Xoo, and the strategies 
for developing varieties with Broad-Spectrum Resistance (BSR) to BB. The future 
challenges are also discussed.
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rice and mutants were identified, and fifteen were molecularly 
cloned and characterized [9-13]. Based on structural features of 
the encoding proteins, these R genes can be categorized into five 
groups, including Receptor-Like Kinase (RLK) genes (Xa21, Xa3/
Xa26 and Xa4), Nucleotide-binding Leucine-rich Repeat (NLR) 
(Xa1, Xa2/Xa31, Xa14, Xa45 and CGS-Xo111) genes, sugar will 
eventually be exported transporter (Sweet) genes (Xa13, Xa25 
and Xa41), executor genes (Xa10, Xa23 and Xa27) and a variant 
of the transcription factor gamma subunit gene (Xa5) Table 1

Table 1:  List of the cloned rice R genes against bacterial blight.

Gene Encoded protein Chromosome

Xa3/Xa26  11

Xa21 RLK 11

Xa4  11

Xa13 (OsSWEET11)  8

Xa25 (OsSWEET13) SWEET-type protein 12

Xa41 (OsSWEET14)  11

Xa10  11

Xa23 Executor R protein 11

Xa27  6

Xa1  4

Xa2/Xa31  4

Xa14 NLR 4

Xa45  4

CGS-Xo111  4

Xa5 TFIIA transcription 
factor 5

RLK Genes
As the primary level of immune system in plants, sensing of the 
diverse Pathogen Associated Molecular Patterns (PAMPs) by the 
cell surface-localized Pattern Recognition Receptors (PRRs), is 
critical for triggering downstream signaling and immune responses. 
Most of the reported plant PRRs are either transmembrane 
Receptor-Like Kinases (RLKs) or Receptor-Like Proteins (RLPs) [14]. 
Compared with RLKs, RLPs lack an intracellular kinase domain 
[15]. In rice, more than 1100 candidate RLKs/RLPs were identified 
[16]. The first cloned R gene Xa21 against BB originated from the 
wild rice species Oryza longistaminata encodes a Leucine-Rich 
Repeat-Like Kinase (LRR-RLK), representing the largest subfamily 
of plant RLK [17,18]. It was found that Xa21 recognizes the 
tyrosine-sulfated peptide RaxX (required for activation of Xa21-
mediated immunity X) secreted by Xoo by direct binding with 
high affinity and activates host defense responses [19,20,21]. 
Additionally, Xa21 functions in a complex with several XBs (Xa21 
binding proteins) for its stability and signaling [10]. Xa3 and Xa26, 
identified from an indica restorer line Minghui 63 and a japonica 
variety Wase Aaikoku 3, respectively, were found to be the 
identical gene encoding LRR-RLK [22,23]. The cognate avirulence 
(Avr) gene to Xa3/Xa26, AvrXa3, has also been isolated, but how 
it is recognized by Xa3/Xa26 and initiates host resistance is still 
largely unknown [24]. Similar to Xa21, other components were 

found to be involved in Xa3/Xa26-meditaed resistance [25,26]. 
Xa4 encodes a cell Wall-Associated Kinase (WAK), another 
subfamily of RLK. In contrast to the developmentally controlled 
resistance mediated by Xa21 and Xa3/Xa26, Xa4 confers a race-
specific resistance to Xoo at all growth stages [27]. A boost of 
jasmonic acid-isoleucine and an accumulation of phytoalexins, 
sakuranetin and momilactone A, are likely to be associated with 
Xa4-mediated resistance [28]. In addition, it could improve the 
lodging resistance by strengthening the cell wall via promoting 
cellulose synthesis and suppressing cell wall loosening. 

NLR Genes
Among all typedfs of plant R genes, NLR is the largest group 
and accounts for more than 60% of the R genes [29]. Around 
480 NLR genes have been found in rice genome [30]. Xa1 was 
the first cloned NLR gene against Xoo and confers race-specific 
resistance by recognizing multiple TALEs [31-33]. However, 
a group of atypical TALE variants lacking the C-terminal 
transcription activation domains, termed as interfering TALEs 
(iTALEs), could suppress Xa1-mediated resistance. Most recently, 
several Xa1 alleles including Xa2/Xa31, Xa14, CGS-Xo111, and 
Xa45 were isolated by two research groups [12,13]. Like Xa1, the 
resistance of these newly cloned R genes were also suppressed 
by Xoo strains carrying iTALEs. A genome-wide survey indicated 
that iTALE genes are prevalent in Asian strains, accounting for 
over 95% of the tested strains, but not African strains [13]. It 
is probably that iTALEs function as decoys interfering with the 
interaction between intact TALEs and Xa1 allelic members, and 
block immune signaling in rice [33].

Sweet Genes
Sweet genes constitute a family of sugar efflux transporters 
involved in a variety of functions, such as senescence, 
pollen development and plant-microbe interactions [34-37]. 
Interestingly, plant pathogens are able to hijack these Sweet 
genes for their nutrition supply that is essential for pathogens 
growth and infection. Although rice genome contains 22 Sweet 
genes which is phylogenetically divided into four clades, only five 
Sweet genes belonging to clade III can function as susceptibility 
(S) genes targeted by Xoo. Three of them including OsSWEET11 
(Xa13), OsSWEET13 (Xa25), OsSWEET14 (Xa41), are known 
as S genes to be targeted by natural TALEs. TALEs were found 
to induce the genes expression by binding to the EBEs in the 
promoter of Xa13, X25 and Xa41. However, mutations in the EBEs 
of the recessive alleles Xa13, Xa25 and Xa41 could prevent Xoo-
mediated activation of these genes, leading to host resistance to 
Xoo [38-48].

Executor Genes
Three executor genes, including Xa27, Xa10 and Xa23, confer 
dominant and TALEs-dependent transcriptional based resistance 
[49-51]. Xa27 was originated from the wild rice O. minuta 
Acc. 101141 and specifically induced by Xoo stains containing 
the TALE AvrXa27 [49]. Increased expression of Xa27 showed 
the thickened vascular bundle elements, even in absence of 
the Xoo infection. Xa27 is localized to apoplast relying on the 

(           ).
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of Xa27, leading to broad-spectrum resistance [65].

Future Perspectives
Rice-Xoo patho-system is a powerful model for research toward 
solutions in disease control. Tremendous progress has been made 
in the two decades, but there are still

many queries and challenges: 

•	 The cognate Avr genes to Xa4 is still not isolated.

•	 How R genes activate downstream signaling components 
and trigger host immune defense responses needs to be 
elucidated.

•	 The underlying mechanism of TALEs’ translocation into host 
cell nucleus remains unknown. 

•	 How iTALEs interfere with the resistance activated by the 
recognition of TALEs by Xa1 or its alleles remains unclear. Are 
there direct physical interactions between iTALEs (or TALEs) 
and Xa1 or Xa1-like NLRs?

•	 After the above-listed queries or challenges are elucidated, 
the R genes against BB should be well understood in breeding 
and scientifically deployed in production. The yield loss of 
rice caused by BB endemic will thus be greatly controlled.
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