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Abstract

This study focused on the comparison of different
Bayesian models developed for prediction of two primary
air pollutants, ozone and PM2.5 emissions. Three
alternate models were developed to incorporate different
correlation structures: 1) univariate model which served
as reference for comparison; 2) univariate spatial model
which incorporated the spatial random effects to account
for the spatial correlation structures among the TAZs; and
3) multivariate model which addressed the potential
correlation among the dependent variables and allowed
the simultaneous prediction to generate more precise
estimates.

Many socioeconomic variables were observed to be
influential such as household density, population,
education, and poverty. Such phenomenon indicates the
disproportionate impact of Ozone and PM2.5 emissions
on the specific areas which requires the efforts to
emphasize social equity and environmental justice. In
terms of factors pertaining to traffic conditions, traffic
density was observed to be statistically significant which
served as an indicator of vehicular emissions. The
univariate spatial model revealed the influence of space
for ozone prediction as a significant positive correlation
was recorded, which reflected the large amount of
variability explained by spatial random effects that may
have escaped the explanatory variables. This finding
highlighted that, relative to PM2.5, ozone emission
models benefit with the inclusion of spatial correlations
as such dependency may be more profound.

In terms of model performance at goodness-of-fit, the
multivariate model significantly outperformed the others
by demonstrating lowest posterior deviance without a
notable increase in model complexity suggesting the
implementation of joint modeling for PM2.5 and ozone
prediction. However, the spatial model was observed to
be superior based on predictive accuracy which indicated
the importance of accommodating the spatial correlation

to account for unobserved heterogeneity and obtain more
precise posterior estimates with minimum deviation from
observed data.

Keywords: Ozone; PM2.5; Spatial correlations;
Multivariate; Goodness-of-fit

Introduction
The emissions from vehicular traffic contribute as a major

source of air pollution in developing or developed cities due to
ever increasing use of vehicles associated with population
growth and industrial development. Vehicular emissions are
comprised of a variety of pollutants which have significant
long-term impact on air quality and may “threaten human
health, damage ecosystems and influence climate” [1]. The
general constituents of vehicle emissions are carbon monoxide
(CO), carbon dioxide (CO2), oxides of nitrogen (NOx),
hydrocarbons (HC), volatile organic compounds (VOCs), and
polycyclic aromatic hydrocarbons (PAHs) [1]. These also
include the particulate matter (PM) and precursors of ozone.

Particulate matter (PM) signifies the solid matter particles
suspended in air which are classified based on the
aerodynamic diameter: coarser particles (with size ranging
from 2.5 to 10 μm, PM10) and fine particles (with sizes up to
2.5 μm, PM2.5). Ambient PM contains numerous carcinogenic
and toxic substances, heavy metals and stable quinoid radicals.
The evidence supported by a plethora of research studies
indicates strong epidemiological association between air
pollution (e.g., PM2.5) and adverse health impacts such as
respiratory inflammation, cardiovascular morbidity, allergy,
asthma attacks, beside other illness [2-7]. The studies focused
on PM emissions have revealed their association with roadway
traffic as vehicular emissions is a significant source of ambient
PM in urban areas mainly due to congested conditions that
force stop-and-go behavior [8]. Different factors pertaining to
transportation have been investigated for correlation with PM
emissions, such as the impact of roadway geometric design
[9-11], built environment [12-14], driving behavior and fuel-
consumption [15], and so on. The results from the
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aforementioned studies demonstrated the association of PM
emissions and the concerned transportation variables. While
developing models for prediction of PM emissions to explore
the relationship between air quality and transportation related
factors, many studies considered the spatial influence since
the local vehicle activity has a major impact on the ambient air
pollutants, hence they tend to affect areas where they are
emitted [16,17]. The spatial dependency was also noted to be
influential for the studies focused on filtering the hazardous
sites based on emissions from vehicles at roundabout
corridors [18], transportation projects [19], or vehicle speed
and traffic intensity [20], demonstrating the significance of
inclusion of spatial correlation to generate more precise
estimates.

Similar to the adverse impact of PM on human health, many
epidemiologic studies have indicated substantial association
between ambient ozone concentrations and their adverse
impact on the respiratory lung diseases and airway
inflammation [21,22]. Similar to the emission particles related
to vehicular traffic, ozone is a highly reactive oxidant gas that
forms major component of air pollution and forms reactive
oxygen species (ROS) by oxidizing important biological
molecules, which eventually target the cellular compartments
of respiratory tract [23-27]. Chronic effects of ozone exposure
on lung function development, asthma incidence, and
pulmonary inflammation have been suggested [28]. Ozone has
been observed to induce lung tumors through free radical
mechanisms and especially by the formation of HO• radicals
[29], which may interact with the DNA to cause mutagenic
damages [30]. Similar to PM emissions, the research has
revealed the association of ozone and traffic activity while also
observing the spatial dependency. Granier and Brasseur [31]
noted that the emissions by road traffic (passenger vehicles
and trucks) of ozone precursors (NOx, CO, hydrocarbons) have
a substantial impact on the concentration of tropospheric
ozone at the regional and hemispheric scale, which directly
relates to adverse health effects. The study by Liu et al. [32]
employed a random-effect linear model for the assessment of
ozone exposure in a community and observed that the
inclusion of traffic and spatial effects accounted for the
variability and improved prediction capability for Ozone. Pont
and Fontan [33] also observed the variations in the ozone at
the macro level of cities dependent on the changes in
vehicular traffic for different days of the week. The study by
McConnell et al. [34] investigated the dependency of
variations in vehicular traffic on the Ozone deficit of a
residential community. The ozone prediction model was
developed by estimation of nitrogen oxides from the traffic
counts near the entities under consideration. This study
corroborated the spatial dependency of the NOx source on the
Ozone prediction. Recently, Wang et al. [35] also observed
substantial variations of predicted ozone concentration over
the spatial entities. Ibarra-Berastegi et al. [36] also utilized the
traffic data for short-term forecasting of ozone and NO2.
However, this study addressed the potential correlation among
the ozone and NO2, since both originate from similar sources,
by joint modeling of the concerned dependent variables using
multiple linear regression model. It was observed that

variables related to traffic accounted for significant variability
and the modeling structure demonstrated improved
persistence as assessed by different statistical parameters.

The aforementioned studies pertaining to PM and Ozone
considered them as separate environmental pollutants based
on the assumption of potential dependency among them,
hence developing individual models as separate dependent
variables. However, recent studies and epidemiological
evidence indicate that, there is a positive association between
airborne PM and O3 and hospital admissions for respiratory
diseases. The study by Valavanidis et al. [37] investigated the
health impact of the interaction of ozone and particulate
matter originated form the vehicular traffic and observed that
the combination generates synergistically increasing amounts
of hydroxyl radicals (HO•), compared to individual action of O3
or PM, which eventually poses more serious impact to
exposed population.

Albeit the literature review illustrates numerous effort to
explore the ozone and PM2.5 emissions by employing different
approaches, there is a lack of comprehensive research
addressing the comparison of different correlation structures
and the associated benefits. To this end, the present study
develops a multivariate modeling structure for simultaneous
prediction of PM2.5 and Ozone (give the interaction among
them) based on the macro-level covariates comprising of
factors pertaining to traffic activity (such as traffic density and
volume), multimodal indicators (such as access to bike lanes,
pedestrian-friendly facilities, transit), and socioeconomic
factors (such as poverty, education, population). Two alternate
models are also developed: 1) univariate model which ignores
the potential correlation among the dependent variables; 2)
univariate spatial model which extends the former model by
incorporating the random effects to account for the spatial
correlations among entities, which are traffic analysis zones
(TAZs) of a city in California in this case. The distance-based
spatial correlation among the neighboring TAZs is incorporated
to account for the unobserved heterogeneity, which results
from non-inclusion of spatial characteristics which may impact
air emissions [38,39]. These three models were developed to
explore the advantages associated with model fit and
prediction accuracy while considering the correlation among
dependent variables (multivariate) or impact of space (spatial).
The univariate model without spatial represents the traditional
approach and acts as a reference. These three models are
assessed by employing five evaluation criteria, namely: Dbar
(posterior deviance), Pd (model complexity), DIC (deviance
information criterion), MSPE (mean square predictive error),
and Residual Sum of Squares (RSS). These criteria assess the
model performance based on goodness-of-fit, explanation of
variability, and predictive accuracy. It is anticipated that this
study will provide valuable insights to the transportation and
environmental agencies of Southern California to promote
transportation and environmental justice.

Methodology
The traditional non-Bayesian techniques such as maximum

likelihood and/or least squares estimations usually involve
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fixing the values of parameters that have an important bearing
on the final outcome of the analysis and for which there is
considerable uncertainty. On the contrary, Bayesian analyses
can take fuller account of the uncertainties related to models
and parameter values. In addition, the Bayesian approach has
the ability to incorporate prior information which is based on
historical data sets or expert knowledge. Finally, the Bayesian
analysis provides a convenient setting for a wide range of
models, such as hierarchical models and missing data
problems. Markov chain Monte Carlo (MCMC), along with
other numerical methods, makes computations tractable for
virtually all parametric models [40]. Given the various benefits
associated with the Bayesian techniques, the study
implements the alternative modeling settings through
Bayesian framework through the freeware WinBUGS [41]. The
following subsections present the detailed analytics of various
models in order.

Model 1: Univariate Model without Spatial Correlations.

In general, the gas emissions can be assumed to follow
normal distribution which gives rise to the following
formulation:

yi|Xi~N(μ,τ)

μi=β0+βXi

τ-1~gamma (0.001,0.001)……..(1)

Where yi represents the concerned gas emissions (Ozone or
PM2.5) for zone i (i=203); Xi is the vector of independent
variables for zone i; μ is the vector representing posterior
mean of the particular gas emissions; τ is the variance whose
reciprocal is presumed to follow a gamma distribution; β is the
covariate coefficients; β0 is the intercept representing the base
condition, which is assumed to follow a normal distribution as
usual.

Model 2: Univariate Model with Spatial Correlations.

This model differs from Model 1 in the way of addressing
the spatially structured heterogeneity. Part of the above
formulation can be modified as follows:

μi=β0+βXi+φi ……..(2)

Where φi is the spatial random effect which takes on the
CAR (conditional autoregressive) correlation:

φi|φk,∑i~Nj(∑k~iCik,φk,∑i)……..(3)

As shown from the above equation, estimation of the
particular emission in any zone is conditional on emissions in
neighboring zones. Subscripts i and k refer to a TAZ and its
neighbor, respectively, and k belongs to Ni, where Ni
represents the set of neighbors of TAZ i. Besides the
identification of neighbors, the assigned weights also affect
the concerned gas estimations. The present study employed
the popularly used distance-based structure where the weight
between TAZ i and j is inversely related with the distance
between the zone pairs. With this weight structure, it is known
that all zones are considered as neighbors to each other, and
the TAZs which are relatively closer would have more weights.

Once φi is estimated, it is also interesting to calculate the
percentage of gas emission variability that is due to spatial
clustering:

α=sd(φi)/sd(μi)……..(4)

Where α is defined as fraction, and sd is the marginal
standard deviation function. The larger the fraction value, the
more variability explained by the spatially structured random
effects.

Model 3: Multivariate Model

This model is distinct from previous models in the sense
that it jointly estimates the emissions of Ozone and PM2.5,
rather than analyze them separately. The resultant formulation
is expressed as below:

yij|Xij~MVN(μj,∑)

μij=β0rj+βjXij

∑-1~Wishart (R,n)……..(5)

Where yij represents the gas emission for zone i (i=203) and
type j (j=2); Xij is the matrix for predictor variables; μj is the
vector representing posterior mean of the gas emissions
(Ozone and PM2.5); βj is the corresponding variable
coefficients; ∑-1 is a symmetric positive definite precision with
the scale matrix R and degrees of freedom matrix n (=2). The
interested readers can refer to the details of Wishart
distribution through previous research.

Modeling Evaluation
In order for assessment of modeling performance from

different perspectives, alternative goodness-of-fit (GOF)
measures were utilized for modeling comparison which are
presented in the following subsections.

GOF Measure 1: Deviance Information Criterion (DIC) and
its Components

Similar to the Bayesian equivalent of the Akaike Information
Criterion (AIC) DIC is also a panelized measure which can be
expressed in the equation below:��� = �+ �� ……..(6)

Where, � represents the posterior mean of the deviance
statistic and PD denotes the effective number of parameters in
the model. The smaller the DIC, the better fitness of the model
tends to be. In general, the modeling deviance could be
reduced with more effective parameters being included.
Therefore, the DIC criterion compensates the deviance with
the model complexity being taken into consideration. In terms
of the guideline suggested by Spiegelhalter et al. a difference
of 7 or more points in the DIC is considered significant for
modeling performance.

GOF Measure 2: Mean Square Predictive Error (MSPE)

MSPE assumes the form shown as below:���� = 1�∑ � = 1� ��− �� 2 ……..(7)
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Where yi is the Bayesian-estimated gas emission of Zone i
and Oi is the observed one for the same zone. The smaller the
MSPE value, the better fitness to the data.

GOF Measure 3: Chi-squared Residual Sum of Squares (RSS)

RSS is defined as:

��� = ∑ � = 1� �� − �� 2��  …….(8)

Where y_i and O_iare as defined previously. Under MSPE,
the larger zones are expected to subject to more deviances
due to larger areas and gas emissions. RSS tends to remove
such bias by calculating the squared residual relative to
estimated amount of gas emissions. A particular model is
considered more reliable if smaller RSS value is observed.

Data Preparation
This transportation planning-level study analyzed the

average annual ozone and PM2.5 emissions from the 203 TAZs
in the city of Irvine, California. The variables used for model
development and the associated descriptive statistics are
shown in Table 1. As evident, diverse variables were
incorporated pertaining to transportation, air-quality, and
socioeconomic factors. PM2.5 and ozone were considered as
the dependent variables and modeled jointly in case of
multivariate model. The primary source of air quality data was
the Office of Environmental Health Hazard Assessment
(OEHHA) while few variables were collected from Air Quality
Management District. These data sources served best for the
purpose of this study as they focus on the collection of
explanatory variables which serve as indicators for more
precise reflection of socioeconomic vulnerability to
environmental pollutants. Satellite data was incorporated to
provide full state coverage for the PM2.5 indicator. The main
data sources for PM 2.5 were Air Monitoring Network and
California Air Resources Board (CARB). For all measurements in
the time period, the mean concentrations were estimated at
the geographic center of the census tract using a geostatistical
method that incorporates the monitoring data from nearby
monitors. Another air pollutant which poses widespread and
significant health threat is ozone. The data were mostly
obtained from CARB, along with other sources such as local air
pollution control districts, tribes and federal land managers.
The indicator value for ozone was computed as a mean of daily
maximum 8-hour ozone concentration (ppm) recorded over

the summer months (May-October) and averaged over three
years (2012 to 2014).

As previously discussed in literature review, the vehicular
emissions were regarded as the primary source of ozone and
PM2.5 emissions and Traffic Density served as the primary
indicator of the vehicle exhaust gases. Since the air emissions
also indirectly get mitigated by the pedestrian and bicycle
activity, possibly in place of vehicular activity, hence the
indicator variables which pertain to presence of sidewalks,
crosswalks, bicycle lanes and other factors, were considered
such as: Bike lane access, Bike lane density, Walk accessibility.
In terms of socioeconomic factors, education and poverty for
the area residents were incorporated. Indicator for the
education shows the percent of the population over age 25
with less than a high school education (5-year estimate,
2011-2015) while the poverty indicator shows the percent of
the population living below two times the federal poverty level
(5-year estimate, 2011-2015). They both act as a social
determinant of awareness and health, where education is
often inversely related to the degree of exposure to indoor and
outdoor pollution while less impoverished populations are
relatively prone to adverse health outcomes when exposed to
environmental pollution. Shape file of TAZ boundary and the
transportation or socioeconomic TAZ characteristics were
provided by SCAG (Southern California Association of
Governments). In addition, the distance matrix containing
distances among various TAZ centroids were also collected
from SCAG for the estimation of distance-based spatial
random effect. Since there are 203 TAZs in the city, the matrix
includes 203 × 202 distances. Their descriptive statistics can be
found in Table 1 as well.

As evident from Table 1, many variables indicated the
possibility of being correlated. To obtain a parsimonious model
and ensure that non-correlated variables were entered for
model development, the correlation analysis was performed
on the multiple covariates using the Harrell Miscellaneous
package in R software which allowed the calculation of
Pearson correlation coefficient. The variables observed to be
correlated at a significance level of 0.05 were eliminated in
multiple steps using engineering judgment to prevent
exclusion of any potential influential variables which would
result in loss of precision of estimated parameters. The final
variables selected for development of models are shown in
Table 3.

Table 1 Summary Statistics of Variables for TAZ’s of the City of Irvine.

Variables Description Mean SD Min. Max.

DVMT Daily vehicle miles traveled 5,4262.44 56,156.84 112.57 276,079.90

Acre TAZ Area (acre) 282.90 431.75 0.69 5,062.95

Median Median house income ($) 48,440.78 50,635.10 0 183,347

Pop_den Population density by area (persons/acre) 6.18 7.96 0 32.40

HH_den Household density (hh/acre) 2.34 3.15 0 13.62
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Emp_den Employment density (jobs/acre) 10.34 17.43 0 121.10

Ret_den Retail job density 0.79 2.02 0 17.45

% age 5_17 % of population age 5-17 8.64% 8.78% 0 27%

% age 18_24 % of population age 18-24 5.79% 7.42% 0 40%

% age 24_64 % of population age 24-64 38.35% 36.12% 0 95%

% age 65+ % of population age 65 or older 6.25% 10.21% 0 83%

K12 K12 student enrollment (thousand) 0.39 1.00 0 5.52

College College student enrollment 0.11 1.00 0 12.59

Int34_den Intersection density (3- and 4- legs) 0.12 0.12 0 0.62

BKlnACC Bike lane access (1=if a TAZ has bike lane) 0.92 0.28 0 1

BL_den Bike lane density 3.40 1.80 0 7.26

Rail 1=at least one rail station in a TAZ 0.01 0.10 0 1

TTbus_D Total Bus Stop Density (stops per mile) 0.05 0.09 0 0.53

Exbus_D Stop density for Express Bus and BRT 0.002 0.007 0 0.06

HFLbus_D High-Frequency Bus Stop Density (local bus headway
<= 20 mins)

0.001 0.004 0 0.03

WalkAcc Walk Accessibility 3.87 9.46 0 74.53

% Arterial Percent of main arterial (45-55 mph) of TAZ 10.61% 17.33% 0 80%

RetSer_den Retail Service Job Density 2.98 6.29 0 0.27

Jobmix13 Job Mix (13 Sectors) 0.543 0.282 0 0.93

Pct_Art Percent of main arterial 0.106 0.173 0. 0.8

Mlt_pct % of households living in multiple unit 0.120 0.169 0 0.5

HQTA_pct % of TAZ area are in non-freeway HQTA 0.197 0.36 0 1

TPA_pct % of TAZ area are in TPA 0.02 0.10 0 0.84

BLdenIND Bike Lane Density Indicator 3.40 1.79 0 7.26

Population Average Population of TAZ (thousand) 18.777 10.447 0.549 50.588

Education Population over 25 age with less than high school
education

-15.531 170.358 -995.8 105.4

Poverty Population living below two times federal poverty level 51.758 38.011 4.7 227

Pestic Pesticide Use 2485.9 4347.1 0 20318.8

Toxic Release Toxicity Weighted Concentration 52713.6 59649.2 4447.8 263112.6

Traffic Density Number of vehicles in a specific area 3178.1 1770.2 509.8 10493.1

Haz Wa Hazardous waste 1.110 1.291 0 8.25

Solid Solid Waste Sites 8.498 6.82 0 27.45

Pollution Contamination of air 15.92 6.82 4.6 39.71

PM 2.5 Annual mean concentration of Particulate Matter 2.5 ( μ
g/m3)

23.86 11.88 8.7 76.74

O3 Average daily maximum 8-hour Ozone concentration
(ppm)

0.12 0.05 0.046 0.37

Distance Distance among TAZ centroids (miles) 4.06 2.09 0.16 11.78
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Results
This study employed the freeware statistical package

WinBUGS for development of three models for the prediction
of PM2.5 and ozone emissions at the macro-level of TAZ. For
assessment of advantages associated with different correlation
structures, the univariate model without spatial random
effects (Model 1) was developed to represent the traditional
approach. The univariate spatial (Model 2) and multivariate
(Model 3) models addressed the presence of potential
correlation structures among the concerned entities and
dependent variables, respectively. A total of 11,000 MCMC
iterations were utilized for parameter estimation after

discarding first 1,000 iterations as burn-in. Two chains were set
up for each model starting from diverse initial values. The
MCMC convergence was ensured by recording MC errors to be
lesser than 5% of associated standard deviations and visual
inspection of history plots, trace plots, and Gelman-Rubin
diagram. As shown in Table 2, the three models demonstrated
varying computational effort. The inclusion of correlation
structures was observed to be directly associated with the
running time as the multivariate model took twice the time
while the a substantial increase in computational complexity
was observed for the spatial model with a 25 second
difference compared to the Base univariate.

Table 2 Running time for alternate models. Note: All of them run 11000 iterations with the first 1000 as burn in; 2-chains.

Model Running time (every 1000 iterations)

1: univariate no spatial 2 seconds

2: univariate spatial 27 seconds

3: multivariate no spatial 4 seconds

Model variable estimates
As shown in Table 3, the three models demonstrated

robustness as implied from the similar set of influential factors
at the significance level of 0.05. most of the socioeconomic
variables were observed to be significant such as population,
education, and poverty. Although the coefficients for PM2.5
and ozone were different but the dependency of these factors
illustrates that the vehicular emissions tend to have higher
exposure for the TAZs with relatively higher population; poorer
inhabitants; and less likely to be educated. The
disproportionate impact of vehicle emissions on such areas
conveys the need to emphasize social equity and
environmental justice for the vulnerable section of society. As
reflected from the coefficients of model estimates, PM2.5
emissions tend to have stronger correlations with such factors

as compared to ozone pollution. In terms of factors pertaining
to traffic conditions and built environment, vehicular traffic
density and area of TAZ were observed to be significant.
Previous studies have also noted the positive dependency of
traffic density and PM2.5 emissions/Ozone as vehicular traffic
is regarded as a primary source of such pollution and traffic
density serves as an indicator of vehicular presence in an area.
The provision of walkability tends to lower traffic activity
which helps mitigate vehicular emissions. Interestingly, the
spatial correlation was observed to be statistically significant
only for the ozone which indicates the explanatory variables,
which are common for Ozone and PM2.5 emissions, were able
to sufficiently account for the space-related heterogeneity in
case of PM2.5 but the spatial random effects, captured the
unobserved heterogeneity which escaped the covariates.

Table 3 Posterior Inference for Ozone and PM2.5 Emissions. Numbers in parentheses represent uncertainty estimates, or,
posterior standard deviations. The statistically significant variable coefficients are shown in bold. α represents the emission
variability explained by the spatial structurally heterogeneity.

Count Type Variables Model 1 Model 2 Model 3

Ozone Intercept 0.017 (0.011) 0.014 (0.011) 0.019 (0.013)

Acre 2.3E-5 (5.5E-6) 2.3E-5 (6.0E-6) 2.3E-5 (6.7E-6)

HH_den 2.9E-4 (8.1E-4) 3.4E-4 (7.9E-4) 3.2E-4 (0.001)

Emp_den 9.8E-4 (0.009) 5.9E-4 (0.008) 8.8E-4 (0.010)

BKlnACC -5.1E-4 (0.009) -1.2E-4 (0.009) -0.001 (0.010)

WalkAcc -5.4E-4 (2.4E-4) -4.5E-4 (2.4E-4) -5.2E-4 (2.9E-4)

% Arterial -0.006 (0.014) -0.005 (0.014) -0.006 (0.017)

Exbus_D 0.133 (0.339) 0.095 (0.328) 0.114 (0.292)

HFLbus_D 0.532 (0.563) 0.519 (0.536) -0.060 (0.458)
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Population 0.002 (2.7E-4) 0.002 (2.7E-4) 0.002 (3.3E-4)

Traffic_D 1.1E-5 (1.6E-6) 1.1E-5(1.6E-6) 1.2E-5 (2.0E-6)

Education -6.6E-5 (1.3E-5) -6.5E-5(1.3E-5) -6.6E-5 (1.6E-5)

Poverty 4.2E-4 (7.9E-5) 4.4E-4(7.9E-5) 4.1E-4 (1.0E-4)

α N/A 0.336 (0.068) N/A

PM2.5 Intercept 2.797 (1.839) 2.763 (1.845) 2.645 (1.790)

Acre 0.004 (9.8E-4) 0.004 (9.9E-4) 0.004 (0.001)

HH_den 0.076 (0.145) 0.076 (0.145) 0.081 (0.143)

Emp_den 0.061 (1.509) 0.071 (1.501) 0.077 (1.492)

BKlnACC -0.511 (1.489) -0.496 (1.482) -0.430 (1.461)

WalkAcc -0.082 (0.043) -0.081 (0.044) -0.080 (0.043)

% Arterial -1.155 (2.483) -1.147 (2.488) -1.100 (2.454)

Exbus_D 8.370 (27.570) 8.526 (27.680) 8.650 (27.480)

HFLbus_D 13.000 (29.930) 12.870 (29.830) 12.860 (29.830)

Population 0.448 (0.047) 0.448 (0.047) 0.449 (0.047)

Traffic_D 0.002 (2.9E-4) 0.002 (2.9E-4) 0.002 (3.0E-4)

Education -0.013 (0.002) -0.013 (0.002) -0.013 (0.002)

Poverty 0.098 (0.014) 0.098 (0.014) 0.098 (0.015)

α N/A 9.4E-5 (1.4E-4) N/A

Modeling comparison
For comparison of alternate models based on goodness-of-

fit, the penalized criterion of DIC was employed. It accounts for
the complexity associated with the number of effective
parameters used for model development which generally
tends to improve model fit. As shown in Table 4, Model 3 was
observed to have the best overall fit with the lowest DIC of
197, with a remarkable difference of 259 and 274 points from
the second-best (Model 2) and worst model (Model 1),
respectively. While comparing the models developed from the
same sample size, the difference of 10 points in DIC may be
regarded as substantial, which reinforces the significant
advantage of multivariate approach to fit the air pollution
data. Compared to the univariate model, the correlated error
terms in case of multivariate model were noted to increase the
complexity due to larger number of effective parameters (Pd
difference of 6 points) but the raised complexity was
compensated with exceptional fit, as demonstrated by
difference of 281 points in posterior deviance. As evident, the
governing factor for overall fit among univariate and
multivariate model was the significant difference of posterior
deviance, where the joint estimation of both air pollutants
proved highly beneficial to accommodate the data. These
results clearly establish that due to the similarities among the
ozone and PM2.5 emissions, the potential bias due to
correlation should be accounted for by joint modeling. In
terms of the impact of spatial random effects, the highest
complexity was observed for Model 2 which may be attributed
to the inclusion of much larger number of effective parameters

for model development as the distance-based spatial matrix
with a dimension of 203 × 202 was incorporated to account for
the spatial correlations among 203 TAZs. The benefit of
incorporation of spatial correlations was extended to better
overall fit (DIC=456) due to reduced posterior deviance
(relative to Model 1) but inferior performance compared to
the multivariate model which exhibited significantly better fit
with half the complexity. Understandably, Model 1 exhibited
the lowest complexity due to the absence of correlation
structures but demonstrated highest posterior deviance that
eventually resulted in worst overall fit with highest DIC.

The subsequent step of this study was to compare the
alternate models based on the predictive accuracy from
different perspectives. Similar to the trend observed for the
goodness-of-fit, Model 3 was observed to have the least
discrepancy between model predicted and observed
emissions, as indicated by the lowest MAD, followed by Model
2 and Model 1. However, in case of RSS, the univariate spatial
model (Model 2) was observed to be superior. It is worth
recalling that unlike MSPE, RSS accounts for the bias induced
due to variations in size of the TAZs. The superior performance
of Model 2 seems to indicate that although the inclusion of
spatial random effects raises model complexity, but they
account for the variability in prediction of air pollutants by
addressing the space-related unobserved heterogeneity that
may have escaped the explanatory variables. This finding
reflects the need for evaluation of model estimates for
assessment of predictive performance since the goodness-of-

Global Environment, Health and Safety
Vol.1 No.2:8

2017

© Copyright iMedPub 7



fit may not be correlated with equivalent performance at
emission prediction.

Table 4 Evaluation performance for alternate models. Note:
the best performance under each criterion is shown in bold.

Model Dbar Pd DIC MSP
E

RSS

1: univariate no
spatial

445.26
6

26.33
7

471.71
0

15.08
3

268.46
0

2: univariate spatial 393.08
1

63.08
7

456.16
8

15.08
2

267.58
0

3: multivariate no
spatial

164.85
5

32.73
5

197.59
0

15.08
1

268.98
6

Conclusions
This study focused on the comparison of different Bayesian

models developed for prediction of two primary air pollutants.
The ozone and PM2.5 emissions were modeled as the
dependent variables for the aggregated data at the
transportation planning level of Traffic Analysis Zones while
the explanatory variables comprised of various transportation
and socioeconomic factors. Three alternate models were
developed to incorporate different correlation structures: 1)
univariate model which served as reference for comparison; 2)
univariate spatial model which incorporated the spatial
random effects to account for the correlation structures
among the TAZs; and 3) multivariate model which addressed
the potential correlation among the dependent variables and
allowed the simultaneous prediction to generate more precise
estimates. The alternate models were assessed based on the
performance at goodness-of-fit and predictive accuracy by
employing five evaluation criteria.

In terms of model estimates, all three models were able to
identify mostly similar influential factors which indicates the
robustness of the different model specifications employed.
Many socioeconomic variables were observed to be influential
such as household density, population, education, and poverty,
which portrays the disproportionate impact of Ozone and
PM2.5 emissions on the specific areas which requires the
efforts to emphasize social equity and environmental justice.
In terms of factors pertaining to traffic conditions, traffic
density was observed to be statistically significant which was
expected considering it served as an indicator of vehicular
activity and eventually emissions. The univariate spatial model
revealed the influence of space for ozone prediction as a
significant positive correlation was recorded. A substantially
larger coefficient for the spatial component reflects the large
amount of variability explained by the spatially structured
random effects, which may have escaped the explanatory
variables (unobserved heterogeneity). This finding highlighted
that, relative to PM2.5, ozone emission models benefit with
the inclusion of spatial correlations as such dependency may
be more profound.

In terms of model performance at goodness-of-fit, the
multivariate model significantly outperformed the others by
demonstrating lowest posterior deviance without a notable

increase in model complexity. However, the spatial model was
observed to employ a very large number of effective
parameters which increased the computational effort due to
complexity but was not followed with an equivalent reduction
in posterior deviance. Overall, the model fit results revealed
the significant advantage of multivariate approach to fit the air
pollution data and suggested the implementation of joint
modeling for PM2.5 and ozone prediction due to potential
similarities. The governing factor for overall fit among the
models was established to be the significant differences of
posterior deviance while the spatial correlation proved inferior
due to raised complexity. However, the spatial model was
observed to be superior based on predictive accuracy, as
assessed by RSS, which indicated the importance of
accommodating the spatial correlation to account for
unobserved heterogeneity that may have escaped the
explanatory variables.
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