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Abstract
Spectral domain optical coherence tomography (SD-OCT) is used for cross-section 
imaging, in ophthalmology for retinal tissue. Extracting structural information 
about the retinal layers is becoming increasingly important, as this has the 
potential to expand retinal disease research and improve diagnosis. The purpose 
of our study was to facilitate a robust and efficient algorithm for segmentation 
of peripapillary retinal Spectralis SD-OCT images. The approach utilized median 
filtering for pre-processing and curve fitting-based regularisation for layer 
segmentation. For evaluating the methodology 40 SD-OCT images were used. To 
quantify the algorithmic performance, the resulting segmentation was compared 
against manual segmentation. Comparing the error in automatic segmentation 
with inter-rater variability showed no significant difference. This shows that 
segmentation for retinal images can achieve high precision. However, there is no 
doubt that existing algorithms do not work well on all pathologies and automatic 
segmentation will likely never replace the ophthalmologist.
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Introduction
Spectral domain optical coherence tomography (SD-OCT) is a 
useful image modality that yields non-invasive high-resolution 
cross-sectional images of biological tissue [1]. In ophthalmology, 
this technology is used for diagnostic purposes, as it allows 
the collection of in vivo information, permitting the display of 
tiny details of the retinal structure [2]. Extracting structural 
information about the retinal layers is becoming increasingly 
important, as this has the potential to expand retinal disease 
research and improve diagnosis. At present, quantitative thickness 
measurements and topographic thickness maps derived from 
those data are widely used for diagnostic and scientific purposes 
[3]. Manual segmentation is limited in its clinical value, as it is 
time- consuming and difficult. As a result, a number of automatic 
segmentation methods have been proposed to segment retinal 
layers [4-20].

The most common segmentation methods are based on intensity 
information [4-13]. However, these segmentation methods 
have difficulties when experiencing intensity discontinuity 
and inconsistencies in the retinal layers. Several improved 

segmentation approaches have been proposed [14-18]. Fabritius 
et al. utilised 3D information to overcome this limitation; however, 
this group only segmented a single layer (with two boundaries). 
Yang et al. used local and global gradient information to segment 
nine boundaries [18].

A common problem in image segmentation, especially with 
cross-sectional retinal images, is speckle noise. New versions of 
SD-OCT such as Spectralis (SPECTRALIS; Heidelberg Engineering, 
Heidelberg, Germany) try to minimise noise by averaging a 
specified number of frames and simultaneously using eye 
tracking. However, speckle noise still needs to be removed for 
precise identification of the boundaries of cellular layers of the 
retina [19-21]. Typically in the literature, this de-noising step 
is referred to as image pre-processing. The most popular pre-
processing methods are median filtering and non-linear filtering 
[6,11-13,19-24]. While median filtering reduces noise effectively, 
it decreases image resolution, as well. Non-linear filters can be 
justified through their ability to preserve edge information.

In our study, we used as pre-processing a mean filter due to 
its simplicity and its property of preserving the important 
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macrostructure of the image, adopted from Herzog et al. [19]. For 
layer segmentation, a curve fitting-based regularisation, modified 
from Yang et al. is utilised [17]. Our focus is on developing a robust 
and efficient approach for peripapillary SD-OCT images. As we are 
using Spectralis SD-OCT technology with active frame averaging 
and eye tracking for images with reduced noise, pre-processing is 
needed to a lesser extent.

The purpose of our study is to present a robust and efficient 
curve fitting-based regularisation algorithm for segmentation of 
peripapillary retinal Spectralis SD-OCT images.

Material and Methods
For evaluating the layer segmentation methodology, 40 SD-OCT 
images of 40 healthy participants were used (one eye was chosen 
randomly for each subject). The Ethics Committee of the Medical 
Association of Hamburg

ruled that approval was not required for this study, as all data were 
acquired anonymously. The study followed the recommendations 
of the Declaration of Helsinki (Seventh revision, 64th Meeting, 
Fortaleza, Brazil) and Good Clinical Practice. Written informed 
consent was obtained from each patient before any examination 
procedures were performed. Patients were excluded from the 
study if they were unable to give informed consent.

Each patient’s history and medical records were carefully 
reviewed for diseases that could possibly affect the retinal nerve 
fibre layer (RNFL). Only patients satisfying inclusion and exclusion 
criteria were included. The ophthalmic inclusion criteria were 
(i) best-corrected visual acuity of 0.3 LogMAR or better, (ii) 
spherical refraction within ± 5.0 dioptres (D), (iii) cylindrical 
correction within ± 2.0 D, and (iv) normal results for visual field 
testing (Humphrey Visual Field Analyzer 30-2 (76 points over the 
central 30° of the visual field]; Humphrey, San Leandro, CA, USA). 
The exclusion criteria were (i) intensive alcohol abuse, (ii) body 
mass index>30  kg/m2,  (iii)  intraocular pressure ≥  21  mm Hg,  
(iv) anterior  ischaemic  optic  neuropathy,  and  (v) congenital 
abnormalities of the optic nerve.

Patients underwent a series of ophthalmic examinations, 
including (i) assessment of best-corrected visual acuity by auto-
refractometry (OCULUS/NIDEK auto-refractometer, OCULUS 
Optikgeräte GmbH, Wetzlar, Germany) followed by subjective 
refractometry, (ii) slit lamp-assisted biomicroscopy of the anterior 
segment,

(iii) ophthalmoscopy after medical dilation of the pupil, (iv) visual 
field testing (Humphrey Visual Field Analyzer 30-2 [76 points 
over the central 30° of the visual field]; Humphrey, San Leandro, 
CA, USA), (v) Goldmann applanation tonometry, and (vii) SD-
OCT image acquisition (SPECTRALIS; Heidelberg Engineering, 
Heidelberg, Germany).

The RNFL scans were acquired using SD-OCT (SPECTRALIS software 
version 6.0a; Heidelberg Engineering). This methodology obtains 
non-contact frames in high resolution of the RNFL. The device 
is a combination of conventional OCT technology and confocal 
scanning laser ophthalmoscopy. A superluminescent diode was 
used to emit a light beam with a wavelength of 870 nm. The SD-

OCT can receive up to 40,000 A-scans per second with a depth 
resolution of 7 µm and a transverse resolution of 14 µm. The 
confocal scanning laser ophthalmoscopy (cSLO) technology 
uses a laser in order to illuminate the retina and to scan it 
point-by-point to deliver a real-time capture of the retina. This 
reference image was linked and saved to the SD-OCT scan with 
an eye tracking system (TrueTrackTM, Heidelberg Engineering, 
Heidelberg, Germany). An additional feature, the automatic real-
time averaging mode (ART), resulted in the achievement of even 
higher quality. First, the area of interest was identified with cSLO 
and then locked. Every time the eye was tracked in the same 
direction, scans were taken. Measured data were automatically 
averaged and artefacts were minimised. In this study, only 
high-quality data with a total of at least 18 frames were used 
to provide images with low noise. Due to high-resolution scans, 
the individual layers of the RNFL were discriminable even in 
the absence of pupil dilatation. We first positioned the scan 
perfectly centred on the optic disc and enabled the ART mode. 
For each patient,  three  high-resolution  scans  and  three  high-
speed  scans  were  acquired  by  a  single  examiner  to minimise 
variability. All images not meeting the following criteria of quality 
were dismissed: (i) the fundus had to be clear before and during 
image acquisition, (ii) absence of scan and algorithm failures was 
necessary, (iii) the grey scale saturation of each RNFL needed 
to be consistent, with the retinal pigment epithelium showing 
maximal shading, and (iv) no discontinuity of the scanned layer.

All SD-OCT images were manually segmented independently 
by two experienced observers. These segmented images were 
established as gold standards (approximate ground truth) and 
were compared with the automatically segmented layers. 
Statistical analysis was performed using a commercially available 
software package (Prism 6 for Mac OSX; GraphPad Software, 
Version 6.0e). The means and standard deviations were presented 
and P-values were corrected according to the Bonferroni method 
to correct for the performance of multiple statistical analyses. All 
P-values were two-tailed, and a P-value<0.05 was considered to 
indicate statistical significance. Correlation was performed using 
Pearson correlation calculations, as the values sampled from the 
populations followed an approximate Gaussian distribution. The 
correlation coefficient is indicated by r.

Calculation
The proposed method consists of image pre-processing and layer 
segmentation. The input images are monochromatic. Image pre-
processing involves 1) median filtering (adopted from Herzog 
et al. [19]), 2) grey-level homogenisation, 3) feature extraction 
using a thresholding operation, and 4) removal of falsely-
detected isolated vessel pixels. Layer segmentation uses curve 
regularisation, as SD-OCT images contain a significant amount 
of noise, and therefore the curve features many local minima 
and maxima. In a typical image, a few layers are typically more 
prominent than others. Consequently, these more prominent 
boundaries are segmented initially, followed by the less prominent 
ones. As the layer boundary is horizontal, each column of the 
image matrix is analysed separately. The following segmentation 
of the boundaries of the individual layers can be described by a 
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curve. The boundary can be described by the following n degree 
polynominal function:

F(x)=anxn+an-1xn-1+an-2xn-2+…+a2x2+a1x+a0

where ai is the co-efficient of the equation and x represents the 
horizontal axis of the curve; the width of the image. x can be any 
integer value from 1 to image width (w). For each x an individual 
f(x) is calculated, leading ultimately to a curve that represents the 
boundary of the layer. This curve fits exactly to the boundary in 
the case that w=n-1. Using curve fitting-based regularisation by 
modifying n to n<<w, the curve is optimised and less distorted 
by noise.

We used the proposed consensus nomenclature for the 
classification of retinal layers and bands visible on SD- OCT images 
of a normal eye by the International Nomenclature for Optical 
Coherence Tomography [IN_OCT] Panel [25]. Eight boundaries 
were detected, including: Boundary 1 corresponding to the inner 
limiting membrane (ILM); Boundary 2 between the nerve fiber 
layer (NFL) and ganglion cell layer (GCL); Boundary 3

between the Myoid Zone (MZ) and Ellipsoid Zone (EZ); and 
Boundary 4 between the Interdigitation Zone (IZ) and the RPE/
Bruch’s Complex (RPE) (Figure 1).

Image pre-processing
The first step in our approach is noise suppression: A median filter 
was chosen due to its simplicity and its property of preserving 
the important macrostructure of the image. We applied a 6 × 6 
median filter to each image. This suppresses most of the speckle 
and homogenises the retina and choroid by destroying the 
underlying microstructure.

The pixel value of the resulting gradient image is not normalised. 
Therefore, all pixel values were linearly re- mapped to the range 0 to 
1, leading to a shade-corrected image with reduced background 
intensity variations and enhanced contrast (Figure 2a).

Further image pre-processing is required to distinguish 
between layer boundaries and the background. The threshold is 
dynamically calculated using the following equation:

threshold=mean(gradlmg)+3 × std (gradlmg)

Figure 2b shows an image with feature extraction using this 
thresholding operation.

A significant number of unnecessary segments that were not 
connected with layers were detected and were considered as 
noise. To remove those unnecessary segments, we applied some 
concept for removing unconnected components. It is obvious 
that all of the unnecessary segments are smaller in size, which 
means that the total number of pixels inside the unnecessary 
segments is relatively low. Component regions were built in 
the image, and all pixels in a component region were assigned 
the same label. In order to remove artefacts, the pixel area in 
each connected region was measured; during artefact removal, 
each region connected to an area below p was reclassified as a 
non-layer. An image resulting from the removal of all non- layer 
classified pixels is shown in Figure 2c.

Layer segmentation
The first three visible boundaries are those of the ILM, MZ/EZ 
and IZ/RPE. For each column of image matrix, suppose that r 
is a vector containing the position of white pixels in ascending 
order. Now, we apply the following difference operation on r to 
calculate r’ where i=1,2,…, length(r) -1

r’(i)=r(i+1)-r						      (i)

For any i, we get relatively high values in the r’ array, because 
of the black band inside of the two white layers. In this setting, 
index i is considered as the position for the ILM layer boundary. 
The value length (r) is the position of the MZ/EZ boundary. The 
IZ/RPE boundary is considered as the median point of the values 
ranging from r(i) to r(length (r)). The described calculation was 
repeated for each column of the image matrix, resulting in a 
curve for the ILM, MZ/EZ and IZ/RPE layer boundaries, as shown 
in Figure 2d. This was followed by the previously described curve 
fitting-based regularisation, illustrated in Figure 2e.

Between the two ILM and MZ/EZ boundaries are two layers 
distinguishable as being separated by the NFL/GCL. Assuming 
that ILM and MZ/EZ are vectors representing the curve of the ILM 
and MZ/EZ layers, then the column position needs to be analysed 
for i=1,2,…,n from ILM (i) to MZ/EZ in order to find NFL/GCL (i). 
Within that range of columns, the second-order derivative of the 
original image pixel values was calculated.

The vector position greater than the predefined threshold was 
assigned to NFL/GCL (i): because 𝑑is a vector of the gradient of 
the column of the gradient image, the threshold is mean (d)+0.7x 
std(d), resulting in a curve for NFL/GCL. After curve fitting-
based regularisation, the curve is less dependent on noise. All 
segmented and calculated boundaries are presented in Figure 3.

Results
In order to quantify the algorithmic performance of the proposed 
method, the resulting segmentation was compared against its 
corresponding ground truth image. This image was obtained by 
the manual creation of a boundary mask in which all boundary 
pixels are set to one and all non-boundary pixels are set to zero. 

 
Figure 1 Illustration of eight intra-retinal boundaries from top 

to bottom: boundary 1: ILM, boundary 2: NFL/GCL, 
boundary 3: GCL/IPL, boundary 4: IPL/INL, boundary 5: 
INL/OPL, boundary 6: IS/OS, boundary 7: OS/RPE and 
boundary 8: BM/Choroid.
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Thus, the performance of automated layer segmentation could be 
assessed. Each layer was represented as a vector of pixel position 
(they coordinate of the layer). The vector of each boundary was 
calculated by the algorithm and compared with the boundary 
vector of the manually segmented image in terms of Euclidean 
distance between vectors. Performance was evaluated based on 
the distance between vectors. A lower distance value indicated 
good performance. The performance results are plotted in Table 
1 (first observer vs. second observer, and algorithm performance 
vs. first observer). The average of all distances in the case of the 
first observer vs. the second observer was 3.443 ± 0.9058. The 
average of all distances in the case of algorithm performance 
vs. the first observer was 3.661 ± 0.9043. Comparing the 
average distances of the first observer vs. the second observer 
with algorithm performance vs. the first observer showed no 
significant difference (p > 0.05). The best and worst algorithm 
segmentations are presented in (Figures 4 and 5).

 
a) Re-mapping all pixel values 
linearly to the range 0 to 1, leading 
to a shade-corrected image. 

b) Highlighting retinal boundaries 
from the background using a 
thresholding operation.  

c) Removing not connected 
segments. 

 
d) Layer segmentation as vectors. e) Optimization of the detected vectors using curve 

fitting-based regularisation. 

Figure 2 Steps of the proposed methods exemplary demonstrated for the ILM, ELM and BM/Choroid boundary.

 

Figure 3 Exemplary demonstration of all segmented and calculated boundaries using the proposed method.

Figure 4 Distances of individual comparisons between 
algorithm performance and first observer in 
Euclidian vectors for all segmented boundaries.
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Discussion and Conclusion
Although OCT technology has been actively researched since 1991, 
the segmentation of retinal layers has only been fully explored 
since the beginning of this millennium. Segmentation, however, 
remains one of the most difficult, and at the same time, most 
frequently required, steps in SD-OCT image analysis. We have 
introduced a robust boundary segmentation method facilitating 
mean filter and curve fitting-based regularisation of noise-
reduced averaged SD-OCT peripapillary scans. The comparison 
of average Euclidean distance of vectors of boundaries between 
manually segmented images and algorithm performance showed 
no significant difference. This indicates that inter-rater variability 
seems too similar to the error of the automatic segmentation.

Direct comparison with the literature is limited, as different 
settings such as different areas of the retina or different SD-
OCT devices are utilised in each method. Generally, no typical 
segmentation method exists that can be expected to work 
equally well for all tasks [26]. Furthermore, no standardised 
approach exists for measuring differences between boundaries: 
in the literature, units of µm, pixels and voxels have been used [21].

The reasons for the high inter-rater variability and, hence, the 
potential variability of automatic boundary detection might 
be due to the complicated detection of boundaries even when 
performed manually. It is important to note that several factors 
might have contributed  to smaller values of difference, including 
machine time (SD-OCT), noise-reduced averaged acquisition 
technique (ART mode) and high image quality.

The results of our approach and the literature show that 
segmentation for retinal images, whether it is peripapillary (as in 
our approach) or related to other regions of the retina [21], can 
achieve high precision. However, it should be noted that results 
are very much dependent upon image quality and machine time.

Potential limitations of our study are that several boundaries 
are calculated, instead of being segmented, in order to improve 
speed. Furthermore, we have only applied our approach to 
healthy participants without any retinal pathology. Additional 
future work needs to analyse the algorithm performance for 
different retinal diseases and the variation in those conditions. 
Strengths of this study are that high-quality images (taken by 
an experienced, trained investigator) and manually segmented 
images from two observers were used. Moreover, the simplicity 
of the presented method should be noted, as this leads to a 
short computational time (3-5 s) using available personal 
computer technology.

In summary, we demonstrate that peripapillary layer segmentation 
using high-quality SD-OCT scans has high performance compared 
to manual segmentation using curve regularisation. There is no 
doubt that existing algorithms do not work well on all pathologies; 
therefore, such limitations make them more appropriate 
for research applications than for clinical use. Automatic 
segmentation will likely never replace the ophthalmologist; 
however, obtaining more information from less complicated 
data could offer valuable improvements to patient care.

Input image with segmentation results 1st human observer
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Figure 5 Segmentation results: Best and worst case. Pre-segmentation image quality is distinctly lower in the worst case compared 
to the best case.

Layer 
Boundaries

Algorithm performance vs. 
First observer

First observer vs. Second 
observer

ILM 2.370 ± 0.8334 2.344 ± 0.8280
NFL/GCL 4.152 ± 1.154 3.244 ± 0.9125
GCL/IPL 3.451 ± 0.9078 3.266 ± 0.9671
IPL/INL 3.482 ± 0.9515 3.562 ± 0.9668
INL/OPL 3.724 ±1.128 3.661 ± 1.208

IS/OS 5.379 ± 1.151 4.054 ± 1.296
OS/RPE 4.397 ± 1.248 4.523 ± 1.473

BM/Choroid 5.649 ± 1.452 5.195 ± 1.977

Table 1 Average performance measures (numbers in Euclidian vector 
difference).
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