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Mini Review 

This note presents a summary of the vagaries of Action 
Principles in the context of Thermodynamics, an account of my 
paper in Entropy of 2011, and references to more recent 
developments. 

 

Historical background 

Action Principles have played an important role in Physics, but 
not in all branches. 

Some of the leading physicists of the 19th Century tried very 
hard to cast Thermodynamics in the mold of Lagrangian 
Mechanics, formost among them Hermann Helmholtz, Joshua 
Gibbs, Henri Poincare, Pierre Duhem and James Clerk Maxwell. 
Maxwell was impressed by Gibbs’ work (1878) and was fully 
engaged in a search for an action principle when he died  

Today, Thermodynamics is seen as being largely defined by 
two dif- ferential equations. There are several formulation but 
the one we shall use was the work of Helmholtz. It concentrates 
the attention on the Helmholtz Free Energy F (V, T ) and on the 
following equations 

 

 

The entropy plays a relatively minor role here, and for 
Helmholtz that 

was a large advantage, for entropy was at that time, as it is 
today, a very difficult concept. The unusual property of entropy 
seemed to make difficult its incorporation into a Lagrangian 
framework  

If we put those considerations aside, and ask whether the two 
equa- tions in (1,1) are the Euler-Lagrange equations of an 
Action A(V, T, S, P ), then the answer is easy to find: 

 

 

The variation must be carried out with S and P fixed. Here we 
have a theory based on 4 variables; the essential point is that all 
of them are independent variables, in the formula and in the 
variational principle; they are the “off-shell” variables. In1 this 
context the entropy is defined in terms of F by the first equation 
in (1.1). 

Review of the paper “Heat and Gravity”, Entropy 2011, , by 
the author, Copy- right 2021 by Christian Fronsdal. 

Defined by (1.2) is global thermodynamics, the 
thermodynamics of a spatially uniform systems in equilibrium. 
There is more to thermo- dynamics than that; most important, 
the systems have kinetic degrees of freedom. Thermodynamics 
must be integrated with Hydrodynamics. The paper under 
review was inspired by the realization that both need to be 
combined with Relativity, Special and General  

 

Relativity 

Einstein created the theory of General Relativity on the 
concept of coordinate invariance and found the action that 
allows to calculate the metric and the motion of point particles. 
Unlike Special Relativity the general theory has never been fully 
integrated with other branches of physics, especially not with 
thermodynamics and hydrodynamics, as can be shown as 
follows. 

The most popular and the most advanced version of non 
relativistic hydrodynamics is based on the action found by 
Lagrange in 1760: 

 

 

where the gradient −▽˙ Φ is the velocity and ϕ is the 
Newtonian potential of gravity. All evidence that Newtonian 
gravity is the non-relativistic limit of General Relativity comes 
from the physics of particles. Until recently there was no 
generally relativistic hydrodynamics that could 

be compared with this classical theory. The Newtonian 
potential was included in (2.1) by analogy with particle physics. 

All of modern, relativistic particle theory can be integrated 
with Gen- eral Relativity, all of the resulting relativistic field 
theories possess non relativistic limits, but none of these non 
relativistic limits contain the Newtonian potential! Can this 
situation fail to convince us that some- thing remains to be 
done? 

In a precursor to the paper under review a special case was 
discov- ered. Consider the scalar, Klein-Gordon field ψ and the 
Lorentz invariant Lagrangian density, 
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where (gµν) is the Lorentz metric, upgraded in a special case 
to 

 

 
where (gmuν) is a general, Riemannian metric. 

The density factor ρ is unconventional in both, except in the 
case that it is a constant. It is needed in the non-relativistic limit 
where the density is an essential variable. This limit exists in the 
form of an expansion in powers of 1/c: 

 

 
The terms of order c2 cancel and there remains the action of 

Lagrange, including the Newtonian potential ϕ ! In (2.2) and 
(2.3) a mass term may be included in the potential W , or it may 
be added as a Lagrange multiplier. This is the only known 
relativistic field theory that includes the Newtonian potential in 
the non relativistic limit. The inclusion of the density as a kind of 
primitivity is the key. It provides a glimpse of a future theory that 
integrates General Relativity with Hydrodynam- ics, it stimulates 
a new approach to Hydrodynamics and, inevitably, to 
Thermodynamics. It was the inspiration for embarking on a 
program to understand thermodynamics and for the paper 
under review  

 

Local thermodynamics 

In local thermodynamics the function F in Eq.(1.2), 
Helmholtz’s free energy, is the integral over space of a free 
energy density f (ρ, T ). We interpret F as the free energy per 
mol or per gram, then 

and the stationary action is 

 

 
 

 

where S is the specific entropy density, the entropy per gram 
or per atom. To this we must add the kinetic energy ρ˙v2/2, 

 

 
Addition of the term ρΦ˙ 

produces the action found by Lagrange for the 

case of of an irrotational vector field ˙v = −▽˙ Φ. Variation of 
(3.1) with respect to the density ρ gives 

where µ = ∂ f (ρ, T ). We shall show that this is the Bernoulli 
equatio (1738) of hydrodynamics  

Theorem. If the specific entropy density S is uniform, then the 
internal energy density u(ρ, s) = f (ρ, T )+sT has the following 
properties 

 

 
where p is the thermodynamic pressure 

 

 
In that case the Euler - Lagrange equation that comes from 

variation of the action (3.1) with respect to the density is the 
Bernoulli equation 

 

 
The integration of Hydrodynamics and Thermodynamics is 

thus com- plete, in this particular case. Unfortunately, the 
restriction 

 

 

 
is very strong. 

 

The Hamiltonian 

The nemesis of Helmholtz and his colleagues was that the 
entropy did not fit the scheme of Lagrangian structural 
dynamics; apparently they took it for granted that the entropy 
should be one of the canonical variables. This difficulty may be 
related to another one, of recent date. In a Lagrangian system 
the Euler-Lagrange equations guthat st arantee ationary 
solutions are minima of the Hamiltonian. In the case that the 

Lagrangian is of the form (3.1), the Hamiltonian density is the 
internal energy density 

 

 

This is the Legendre transform of the Lagrangian. In a 
standard La- grangian theory the Hamiltonian has an important 
property: the ground states are characterized as minima of the 
Hamiltonian H = ∫ d3xh. 

[7-9].

[10-13].
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But the systematic investigation by Callen has shown that, for 
sta- tionary states in the absence of gravity, it is not the integral ∫ 
d3(f + sT ) that has this property, but ∫ d3xf . The error arises 
from the fact that 

our Action is degenerate; the variables S and T do not form a 
canonical pair.

 

This may be what has prevented Callen (and Helmholtz) from 
rec- ognizing a Lagrangian underlying his system of equations. 
And we are in the same difficulty since our identification of the 
Hamiltonian density with the internal energy density is wrong. 
Once recognized, this defect can now be repaired  

A slight change of notation will do it; replace the variable S by 
the variable σ, according to 

 
 

 
 

This has the effect of removing the term sT from the 
Hamiltonian. In the Lagrangian replace 

 

 
with k constant. Now we can promote σ to a canonical 

variable, with canonical conjugate kρT . The variational 
equations remain the same, except for a new Euler - Lagrange 
equation, from variation of σ, namely 

 

 
The equations of motion include the Fourier heat equation 

and the canon- ical system is non-degenerate. Note that S, under 
its new name, retains all the classical attributes. This includes 
the “always increase” property postulated by Clausius and 
proved by Gibbs under conditions that are valid within the 
variational framework. And finally, the canonical Hamil- tonian is 

now the free energy; it includes a term kρ(▽˙ T · ▽˙ σ), instead of 
sT. 

The new expression for the total Lagrangian is 
 

 

The Hamiltonian energy appears amplified by the heat energy 
∫ d3xρsT , a term that is attributable to Dark Matter. The total 
energy is 

 

 

Including the heat energy will help to explain the expansion of 
the uni- verse 

 

Extension of hydrodynamics. 

The integration of irrotational hydrodynamics with 
thermodynamics makes urgent the generalization of 
hydrodynamics beyond irrotational velocities. So far we have 
followed the trend of classical applications of hydrodynamics, 
adopting the Lagrangian found by Lagrange with the limitation 
to irrotational velocity fields. This is not the popular expla- 
nation of the meniscus seen in a glass of water that is placed on 
the center of a turn table. Here, the usual explanation would 
rely on an- other Lagrangian, as old as that a of Lagrange and 
usually attributed to 

Euler 
 

 
(5.1)One difficulty is that in this case there is no justification 

for including the Newtonian potential. (The approach to 
hydrodynamics that is based on the Navier - Stokes equation 
combines solutions of both theories while ignoring the Euler- 
Lagrange equations of both.) 

Landau was the first to speak for the existence of two vector 
fields, using the solutions of both, phonons for the irrotational 
modes, rotons for the other, although he never acknowledged 
the connection between (5.1) and his rotons. Early attempts to 
construct variational equations for super fluids, including the 
first one by London (1950), simply added the two Lagrangians, 
ignorong the irrotational restriction as well as the equation of 
continuity)  

The fact that (5.1) contains a vector field, like 
electrodynamics, should have been a warning that the complete, 
Lorentz invariant version is a gauge theory. The relativistic 
extension was discovered by Rascetti and Regge (1973). That 
war 33 years after Landau’s proposal and 10 years after the 
relativistic gauge theory was described by Ogievetskij and Pol- 
ubarinov. There was a serious attempt by Seliger and Whitman 
(1968) but it did not embrace relativity 

The natural dynamics of 2-vector, conservative hydrodynamics 
is found to be a combination of the two Lagrangians in (2.1) and 
(5.1). 

The field ˙ X is strongly constrained; nevertheless it provides 
the extra variables that are needed for fluid stress. As a vector 
field it supplies the spin that is needed for applications to 
Superfluids and to Gravitational Waves. The theory has been 
applied to several problems, listed here. 

Stability analysis of cylindrical Couette flows (2020b). 
Newtonian theory of rotating Planets (2021a). Metastabile 
fluids, capillary action and Superfluids (2021b). Hydrodynamic 
sources of Gravitational Waves (2021c). Under the meniscus, a 
physical theory of capillary effect (to be published). 
Hydrodynamic Drag” (in progress). 
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