
Abstract Methods: The Key to Abstraction and Polymorphism in Object-Oriented
Programming
Yutaka Miyata*

Department of Computer Science and Information technology, Keio University, Tokyo, Japan

Corresponding author: Yutaka Miyata, Department of Computer Science and Information technology, Keio University, Tokyo, Japan, Email:
yutakamiyata45@yahoo.com

Received date: March 03, 2023, Manuscript No. IPACSIT-23-16777; Editor assigned date: March 06, 2023, PreQC No. IPACSIT-23-16777(PQ);
Reviewed date: March 21, 2023, QC No. IPACSIT-23-16777; Revised date: March 28, 2023, Manuscript No. IPACSIT-23-16777 (R); Published date:
April 04, 2023, DOI: 10.36648/ 2349-3917.11.4.2

Citation: Miyata Y (2023) Abstract Methods: The Key to Abstraction and Polymorphism in Object-Oriented Programming. Am J Compt Sci Inform
Technol Vol: 11 No: 4: 002.

Introduction
Abstract methods are a crucial concept in Object-Oriented

Programming (OOP), facilitating the creation of abstract classes
and interfaces. They serve as placeholders for method
declarations, allowing subclasses to provide concrete
implementations. This research article explores the concept of
abstract methods, their role in achieving abstraction and
polymorphism, and their practical applications in software
development. Abstract methods play a pivotal role in achieving
abstraction and defining the behavior of classes in an OOP
paradigm. They provide a blueprint for methods that must be
implemented by subclasses, ensuring adherence to a common
interface while allowing for customization based on specific
requirements. Abstract methods are method declarations
without any implementation details. They are marked with the
"abstract" keyword and exist solely to be overridden by
subclasses. Abstract methods define the method signature,
including the name, parameters, and return type, without
providing any actual code block.

Abstract Classes and Interfaces
 Abstract methods are primarily associated with abstract
classes and interfaces. Abstract classes serve as partial
implementations, combining concrete methods with abstract
methods. They cannot be instantiated but can be extended by
subclasses, which must provide implementations for all abstract
methods. Interfaces, on the other hand, are collections of
abstract methods. They define a contract that classes
implementing the interface must adhere to. By implementing an
interface, a class guarantees the availability of specific methods
and establishes a common interface for interacting with objects.
Abstract methods enable two critical principles in OOP:
abstraction and polymorphism. These concepts contribute to
code modularity, extensibility, and code reuse. Abstraction
refers to the process of simplifying complex systems by
identifying and emphasizing essential features while hiding

implementation details. Abstract methods facilitate
abstraction by defining a common interface that subclasses
must adhere to. By focusing on the behavior rather than the
implementation, abstract methods allow for the creation of
generalized classes and interfaces, making code more
maintainable and adaptable to changing requirements.
Polymorphism refers to the ability of objects to take on
multiple forms. Abstract methods play a key role in achieving
polymorphism through dynamic method binding. Subclasses
that extend an abstract class or implement an interface can
provide their own unique implementations for abstract
methods, allowing for different behaviors while adhering to
the common interface. Polymorphism enables flexible and
extensible code, as objects can be treated uniformly based on
their shared interface. This allows for the interchangeability of
objects, promoting code reuse and facilitating the creation of
modular and scalable software systems.

Abstraction through Abstract Methods
 Abstract methods are a vital component of object-oriented
programming, facilitating the achievement of abstraction and
polymorphism. By defining method signatures without
providing implementation details, abstract methods enable
the creation of abstract classes and interfaces, ensuring
adherence to common interfaces while allowing for
customization and specialization in subclasses. Abstraction and
polymorphism, enabled by abstract methods, contribute to
code modularity, extensibility, and code reuse. They promote
clean and maintainable code by hiding implementation details
and providing a clear separation of concerns. Abstract
methods find practical applications in various software
development scenarios, allowing for the creation of flexible
and adaptable systems. Understanding and effectively utilizing
abstract methods empower developers to design robust and
scalable software solutions, facilitating the development of
complex systems while maintaining code integrity and
flexibility.

Commentary

iMedPub Journals
www.imedpub.com

American Journal of Computer Science and Information Technology

ISSN 2349-3917 Vol.11 No.4:002
2023

© Copyright iMedPub | This article is available from: https://www.imedpub.com/computer-science-and-information-technology/ 1

mailto:yutakamiyata45@yahoo.com
http://www.imedpub.com/
https://www.imedpub.com/computer-science-and-information-technology/

	Contents
	Abstract Methods: The Key to Abstraction and Polymorphism in Object-Oriented Programming
	Introduction
	Abstract Classes and Interfaces
	Abstraction through Abstract Methods

