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Introduction
Broomhead and Lowe were the first to introduce the Radial 
basis function neural network (RBFNN). Its concept was based 
on the Cover’s Theorem [1,2]. The RBFFNN is known as universal 
approximate due to its remarkable performance in the problem 
of function approximation [3-5]. Originally, the RBF networks 
were designed for data interpolation in a higher dimensional 
space [5]. However, its applications are in wide area of 
engineering and it has been used as an important tool for function 
approximation, prediction, estimation, and system control [4-
9]. The main advantage of RBF compared to other algorithms 
based on neural networks is the simplicity of computation of its 
network parameters [5]. The RBF networks perform the complex 
nonlinear mapping of the data that enables a fast, linear, and 
robust learning mechanism without significant computational 
cost [2]. 

Some of the most commonly used basis kernels are: Gaussian 
kernels [2], multi-quadric kernels [2], inverse multi-quadric 
functions [2], thin-plate spline kernels [5], and cosine kernels [10] 
etc. However, the selection of a proper kernel is highly problem-
specific. A usual design of an RBFNN involves the learning of the 

centers of the kernels, the widths of the kernels, and weights 
of the networks [2]. In this context, a huge amount of work is 
carried out in the literature [11-16]. 

The most commonly used RBF kernel is the Gaussian kernel 
which employs the Euclidian distances between the feature 
vectors and the centers of the kernels [2]. However, it is shown in 
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[10] that there can be scenarios where cosine distances are more 
significant in separating the features compared to the Euclidean. 
Thus, the work in [10] developed an RBF kernel by employing a 
linear combination of Gaussian kernel and cosine distance based 
kernel. Later, a time varying combination of the two kernels is 
proposed in [17] to improve the overall performance. In this 
work, a weighted cosine RBF kernel is proposed in which the 
conventional cosine distance is weighted by a diagonal matrix. 
We show that the weighting matrix can either be application 
dependent or it can be made adaptive via steepest descent 
based optimization. For the first case, we present two different 
applications: (1) PDZ domain classification and (2) Channel 
estimation for correlated inputs. For the second case, we 
develop a mechanism to recursively update the weighting matrix 
for the weighting matrix via steepest descent minimization of 
mean square error (MSE) cost function. This adaptive weighting 
matrix based RBF kernel is used for Leukemia disease prediction 
problem.

The main contributions of this study are as follows:

1)	 In Section (Proposed Weighted Cosine Rbfnn (Wc-Rbfnn)), 
we propose a novel weighted cosine RBF kernel where the 
weighting is introduced in: i) the inner product of input 
and neuron’s center, ii) norm of the input vector, and iii) 
norm of the center vector.

2)	 In Section (Choice of Weighting Matrix for the Wc-
Rbfnn), we show how the weighting matrix can be chosen 
differently for different applications in order to optimize 
the performance of the WC-RBFNN. For that purpose, we 
present two examples: the PDZ domain classification and 
the channel estimation problem with correlated inputs.

3)	 In Section (Design of an Adaptive Weight for Wc-Rbfnn), 
we develop an automatic mechanism to update the 
weighting matrix for an arbitrary data using the approach 
of steepest descent optimization. For the validation of 
our adaptive design, we present the problem of Leukemia 
disease prediction.

The paper is organized as follows: Following this introduction, we 
provide an overview of the conventional RBF kernels in Section 
(Overview of the Conventional Rbf Kernels). In Section (Proposed 
Weighted Cosine Rbfnn (Wc-Rbfnn)), we develop the proposed 
weighted cosine RBF kernel. The choice of weighting matrix 
for the WC-RBFNN is discussed in Section (Choice of Weighting 
Matrix for the Wc-Rbfnn). In Section (Design of an Adaptive 
Weight for Wc-Rbfnn), an adaptive strategy is developed to make 
the weighting matrix of the WC-RBFNN time varying. Simulation 
results are presented in Section (Simulation Results). Finally, the 
concluding remarks are provided in Section (Conclusion).

Overview of the Conventional Rbf 
Kernels
In this section, we provide an overview of existing RBFNNs which 
are conventionally used in the literature. The RBFNN transform 
the nonlinear classification to linear classification by mapping the 

data into a higher dimensional space using some nonlinear kernel. 
According to Covers theorem, translation of features from lower 
dimension to a higher dimension simplifies the classification task 
via linear separation [1]. 

The RBFNN consists of three layers: an input layer, a hidden 
layer, and a linear output layer as shown in Figure 1. All inputs 
are connected to each hidden neuron. The input vector is passed 
through the hidden layer which consists of nonlinear mapping 
function. The ith neuron of the hidden layer employs a nonlinear 
kernel (denoted by ( )i ix cφ −  ) to compute distance between 
the input vector x and its center vector ci. The nonlinear kernels 
are of different types which can be categorized broadly into two: 
Euclidian Distance based and Cosine Distance based. These are 
discussed in the ensuing sub-sections.

A. Euclidian distance based RBF kernels

Most commonly used RBF kernels are as follows [2],

Multiquadrics:

Most commonly used RBF kernels are as follows [2],

Multiquadrics: 2 2( )i i ix c x cφ τ− = − +                                        (1)                                          

Inverse multiquadrics: 2 2
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x c
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where Ƭ > 0, is a constant and β is spread parameter. 

It can be seen from the above examples that the RBF kernels are 
usually function of the Euclidean distance between input and the 
center vectors. These distances are then mapped via some non-
linear functions such as Gaussian function given in (3). Here, the 
parameter β plays the role to adjust the sensitivity of the kernel. 
For example, its larger value will make the kernel less sensitive to 
a given input and vice versa.

B. Cosine distance based RBF kernels

One recent study [10] showed that there are scenarios where 
Euclidian distance becomes ineffective way of distinction. Thus, 
a cosine distance based RBF kernel was proposed in [10] which it 
evaluates the cosine distance between the input vector and the 
RBF’s center vector as follows:

Figure 1 Computation of history matrix via Bigram global 
history matrix.
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where < xci > is showing the dot product of vectors x and ci. 

The term x ∑   in (4) represents the weighted norm of the 
vector x which can be evaluated using the following definition:

2 Hx x x∑= ∑                                                                                                                                                      (5)

It is argued in [10] that the cosine distance based kernel is more 
suitable when the lengths of vectors are very close yet differ in 
their inclinations. Later this work was extended to a time varying 
convex combination of Euclidian distance based and cosine 
distance based kernels as follows [17]:

2
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where α(n) is a time varying mixing parameter which is adapted 
by minimizing the mean square error cost function [17].

Proposed Weighted Cosine Rbfnn (Wc-
Rbfnn)
In this study, we propose a weighted cosine RBF kernel in which 
weight to the dot product and to the norm of the individual 
vectors are provided which result in the following kernel:

( , )
H

i
i i

i

x cx c
x c

φ ∑
=

∑ ∑    

                                                                                                                             (7)        

where ∑ is a diagonal weight matrix with σm as its mth diagonal 
element, xH∑ci is the weighted correlation between vectors x and 
ci such that:

*
,

1

M
H

i m m i m
m

x c x cσ
=

∑ =∑                                                                                                                                       (8)

where M is the length of the vectors and xm and ci,m are the mth 
elements of x and ci, respectively. 

The proposed RBF kernel given in (7) is named as Weighted 
Cosine RBF (WC-RBFNN).

**1The notation ()H denotes conjugate transposition operation. 
For the real input vectors, this is equivalent to taking transpose 
only [18].

Remarks
•	 The weighting matrix ∑ is playing a role of giving specific 

importance to certain elements in the evaluation of cosine 
distance. In order to understand this further, we consider 
the weighted correlation between the two vectors x and ci 
defined in [8].

 • It can be seen that the parameter σm is giving different 
weights to the mth term *

,m i mx c in this summation. Thus, if 
the correlation between x and ci is dominant due to certain 
terms, higher weights to these terms can increase their 
impact on the overall summation which eventually results 
in the enhancement of the cosine distance between the 
two vectors. Hence, the output of those neurons will be 
higher which are closer to specific input in terms of cosine 
distance.

• Consider the two extreme scenarios:

a)	 If x = ci (showing full positive correlation), the WC-
RBFNN’s output for the ith neuron will be

2
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                                                                      (9)

b)	 If x = -ci (showing full negative correlation), the WC-
RBFNN’s output for the ith neuron will be 

2
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Thus, we conclude that the output of the WC-RBFNN’s neuron 
lies in the range [-1, +1] where extreme values show the full 
negative and full positive correlation cases, respectively.

Choice of Weighting Matrix for the Wc-
Rbfnn
There can be an obvious question as how to choose the diagonal 
weighting matrix. This choice mainly depends on the application 
and which way the proposed RBF kernel is utilized. Some of the 
examples of specific applications are discussed in the following 
sub-sections.

A. Application in PDZ domain classification

PDZs are structural domains that are contained in numerous 
otherwise unrelated proteins. In general, they consist of 
approximately 90 amino acids and in the human genome are 
considered to be the most common protein domain [19]. PDZ 
domains are mainly recognized for their mediator role in the 
assembly of receptors at the cellular membrane interface [19-
24]. Although, there are several PDZ domain classes; but, the 
two most dominant recognition patterns are X-S/T-S-φ for Class I 
PDZ domains and X-φ-X-φ for Class II PDZ domains [25,26]. There 
are many works in the field of protein and PDZ domain analysis. 
One of the recent work in [27], topological predictions for 
integral membrane transport proteins as well as guides for the 
development of more reliable topological prediction programs 
for family-specific characteristics are provided. In another work 
by [28], the response surface methodology (RMS) and artificial 
neural network (ANN) modeling were applied to optimize medium 
components for spinosad production. The Genetic Algorithm 
(GA) is used for ANN’s input optimization. They conclude that 
the hybrid ANN/GA approach provides a viable alternative to the 
conventional RSM approach for the modeling and optimization of 
fermentation processes. Related to protein study, another work 
in [29] provides molecular modelling of CtHtrA protein active site 
structure identified putative S1S3 sub site residues I242, I265, 
and V266.

In our work, we focus on classifying the Class I PDZ domains (i.e., 
having X-S/T-S-φ pattern) and Class II PDZ domains (i.e., having 
X-φ-X-φ pattern) which were reported in [25,26] using a novel 
history weighted cosine RBF NN. Now, consider first the features 
we have used in our classification task. The set X = A, B, C, D, E, F, 
G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y is all possible amino acids 
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(AAs). A protein sequence of length M, it has M-1 bigrams. For 
example, ABCDEFG has the following bigrams: AB, BC, CD, DE, 
EF, and FG. We computed the bigram normalized frequency of 
amino acids in a PDZ sequence by counting the number of times 
that bigram appears in the PDZ domain and dividing by M-1. To 
design the required weighting matrix ∑, we first evaluate the 
Bigram (Figure 1).

Global History Matrix (BGHM) denoted as Gk for the kth class. In 
order to compute BGHM, we first aligned our dataset separately 
for Class I and Class II PDZ domains using CLUSTALX 2.0 [30]. The 
concept of BGHM is illustrated in Figure 1, where we compute 
the global frequencies of every existing bigram for a set of PDZ 
domains sequences. Since, we are dealing with three classes of 
PDZ; therefore, we have three BGHMs: GI and GII. Every Column in 
Gk (k = I, II) indicates normalized frequencies of all possible bigrams 
at that position in every PDZ domain. To ease the computational 
burden, we set the number of columns in Gk to the length of the 
longest PDZ domain sequence for kth class. Once the BGHM for 
each class is evaluated, a history weight matrix (H) is computed 
as shown in Figure 2 for a given PDZ domain. To understand the 
computation of the history matrix H, consider the example of 
the PDZ domain ETRREIKLFKGPKGLGFSIAGGRRNQTKIIDGGA. In 
this PDZ sequence, the bigram ”RR” appears 3rd, 23rd, and 35th 
positions. Assuming that the corresponding elements in the 
BGHM Gk has entries 3 0.04RRf = , 23 0RRf = , 35 0.059RRf = , respectively. 

Thus, the element in the history matrix H corresponding to the 

bigram RR is calculated by the summation of 3 0.04RRf = , 23 0RRf =

, 35 0.059RRf = , i.e., 3 23 35 0.099RR RR RR RRF f f f= + + = (as depicted by the 

Figure 1). 

Finally, this history weight matrix H is used as the weighting 
matrix for the RBF, i.e., ∑=H and the resulting RBF is named as 
History weighted cosine RBFNN (HWC-RBFNN).

B. Application in channel estimation for correlated inputs

In this section, we show a a different domain of application for 
the proposed WC-RBFNN, that is, the channel estimation using 
the WC-RBFNN. Considering the problem of channel estimation 
in the presence of correlated inputs x. If the channel to be 
estimated is represented as an M×1 vector h, the output of the 
channel at iteration n can be expressed as o(n)=xHh+v(n), where 
v(n) is a zero mean i.i.d. noise sequence with variance 

2
vσ and xi 

is M×1 zero mean correlated input vector with correlation matrix 
Rx, i.e., E[xxH] =Rx. The goal of the RBF is to estimate the unknown 
channel by minimizing the cost function 

J(w)=E[e(n)2]

where e(n) is the estimation error given by;

e(n)=d(n)-y(n)                                                                   	              (11)                                                                                                                                

where d(n) and y(n) are the desired response and the output of 
the RBF, respectively. 

The desired response, in the case of channel estimation, is 
d(n)=o(n)=xHh+v(n) while the output of the RBF can expressed 
as y(n)=φT(x)w(n) The estimation of the channel is obtained via 
recursive computation of the RBF weights w(n) via steepest 
descent optimization as follows: 

w(n+1)=w(n)+µe*(n)φT(x)                                                                  (12)           

It is known fact from the theory of adaptive filtering that the 
convergence speed of steepest descent optimization is severely 
degraded by the input correlation [18]. For example, if the 
adaptation is used by minimizing the mean-square-error cost 

function, the step-size µ is bounded as
max

20 µ
λ

< <  [18], where

λmax is the maximum eigenvalue of the input correlation matrix Rx. 

Thus, higher the correlation among the inputs, slower is the 
learning speed for the adaptation. The same can be true for the 
case of RBF based channel estimation. In order to deal with this 
issue, it is proposed to set the weighting matrix ∑ as follows:

1
xR−∑ =                                                                                                                                                      (13)

Knowing the fact that the input correlation matrix is Hermitian, 
we can factorize the ∑ as2

1 1/2 /2H
x x xR R R− − −∑ = =                                                                       (14)                                                                                                                            

**2The representation RH/2 is a short notation for (R1/2)H.

By doing so, we can see that the output of the proposed RBF 
kernel for the ith neuron is transformed to

1 1

1/2 /2

( , )
x x

H H
x x i

i i
iR R

x R R cx c
x c

φ
− −

− −

=
   

                                                                                                                                         (15)

Now, if we define /2H
xx R x−=  and  /2H

x ic R c−= , we can write 

1/2H H
xx R x− −= and 

1/2H H
xc R c− −=

As a result, the above expression can be reformulated as:Figure 2 AUC Plots after holdout cross-validation for BP FFNN, 
ED-RBFNN, CR-RBFNN and WC-RBFNN.
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The correlation matrix of transformed vector x can be evaluated 

as:
/2 1/2 /2 1/2[ ] [ ] IH H H H

x x x x x xR E xx R E xx R R R R− − − −= = = =                                                (17)

which proves that the input vector is transformed to a white 
vector with the choice of weighting matrix given in (14). Hence, 
the transformed output of the RBF given in (16) is now dealing 
with white input vectors which promise improvement in the 
convergence speed of the proposed RBFNN.

Design of an Adaptive Weight for Wc-
Rbfnn
In this section, we aim to design the mechanism to make the 
weighting matrix ∑ time varying. To do so, we employ the 
steepest descent approach to minimize the mean-squares-
error (MSE) cost function, i.e., J(∑)=e2(n), where e(n)=d(n)-y(n) is 
the error at the output for the nth iteration. We consider more 
general scenario in which every neuron has different weighting 
matrix. Thus, the steepest descent recursion for the weighting 
matrix of ith neuron is given by

( 1) ( ) ( )s i ii i
n n Jµ ∑+ = − ∇ ∑∑ ∑                                                                                                                          (18)

where ( )i J i∑∇ ∑ represents the gradient of cost function J(∑i) 

w.r.t to the weighting matrix ∑i.

Since, ∑i is a diagonal matrix such that diag (∑i)=[σi,1, σi,2,… σi,M], we 
can evaluate the ( )J∑∇ ∑ as
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                                                                        (19)

whose mth diagonal element can be evaluated as

( )
,

,m
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i
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where wm(n) is the mth element in the weight vector w(n) and 
,i mσ
 is defined as

,
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which is found to be
22
,

, 2
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                                                 (22)

Thus, the adaptive weight matrix of the ith neuron can be 
computed via Equations (18), (19), (20), (21) and (22). Hence, the 

resulting WC-RBFNN utilizes an adaptive weighting matrix and it 
is abbreviated as AWC-RBFNN.

Simulation Results
In this section, we present three examples to investigate the 
performance of the two proposed variants of the WC-RBFNN in 
previous sections. These examples are discussed in detail in the 
ensuing subsections.

A. PDZ domain classification

In order to validate the performance of our algorithm, we 
perform a comparative study using holdout cross validation and 
compare the performance of the proposed WC-RBFNN with the 
conventional variants of the RBFNN, that is, Eucledian Distance 
based RBF (ED-RBFNN), Cosine Distance based RBF (CDRBFNN). 
For the WC-RBFNN, we have used the two types of weighting 
matrix: One proposed in Section (Choice of Weighting Matrix 
for the Wc-Rbfnn- Application in PDZ Domain Classification), 
i.e., History Weighted WC-RBFNN or simply HWC-RBFNN and 
the other proposed in Section (Design of an Adaptive Weight for 
Wc-Rbfnn), i.e., AWC-RBFNN with adaptive weighting matrix. The 
data set of the PDZ domains we used are taken from the work in 
[25,26] which has two classes: Class I with 45 PDZ domains and 
Class II with 20 PDZ domains. This data set is divided into two 
sets: training and testing. In each run, we used training set to 
train the weights for NN and the testing set is used to evaluate 
the classifiers accuracy. Since Area Under Curve (AUC) is more 
discriminating measure than accuracy, we used AUC to compare 
the effectiveness of the two algorithms. Since our feature vectors 
are high dimensional the ED based classifier suffers with the 
challenge of dimensionality which is also evident in the ROC curve 
plots3 presented in Figure 2, that 3The ROC curves are the curves 
for true positive rate (TPR) vs false positive rate (FPR) shows the 
comparative ROC curve for the four RBF based classifiers: ED-RBF, 
CD-RBF, HWC-RBF, and AWC-RBF. The issue of dimensionality 
was so critical that the conventional ED-RBF could not manage 
it, yielding a poor AUC 0.543. The CD RBF performs better with 
AUC of 0.759. The AUC of 0.842 for the adaptive weighting based 
AWC-RBF shows its better performance compared to the ED-RBf 
and the CD-RBF. However, the HWC-RBF achieves the highest 
AUC of 0.913. This shows that the proper selection of weighting 
matrix can improve the overall performance and it can perform 
even better than the adaptive weighting matrix design (Figure 2).

**3The ROC curves are the curves for true positive rate (TPR) vs 
false positive rate (FPR).

B. Channel estimation in the presence of correlated inputs

Next, we investigate the proposed RBFNN for a channel estimation 
problem with an unknown channel selected as h=[0.227, 0.460, 
0.688, 0.460, 0.227]T. The RBFNN used in this experiment has 10 
numbers of neurons at the hidden layer. The input to the RBFNN 
and unknown channel is an M dimensional correlated complex 
Gaussian input which is generated with the following correlation 
matrix:
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where 0 < αc < 1 is the factor that controls the correlation between 
the regressor elements. 

In this experiment, the input vector has the same length of 
that of the channel, that is, M=5. We set the SNR to 20 dB. We 
compare the MSE performance of the conventional ED-RBFNN, 
CD-RBFNN, the whitening based WC-RBFNN proposed in Section 
(Choice of Weighting Matrix for the Wc-Rbfnn- Application in 
Channel Estimation for Correlated Inputs) and the AWC-RBFNN 
proposed in Section (Design of an Adaptive Weight for Wc-Rbfnn) 
and the result is reported in Figure 3. It can be easily seen that 
the proposed whitening based WC-RBF out performed all of its 
counterparts in both convergence speed and the steady-state 
error. This indicates that the knowledge of weighting matrix 
for specific application can improve the performance and its 
performance is even better than that of the AWC-RBF.

C. Prediction of leukemia cancer

In this section, we present application from the field of 
bioinformatics, specifically, using gene microarray data as a tool 
to predict cancer. Using the standard Leukemia ALL/AML data 
[31], we aimed to develop a method of Leukemia prediction. 
The data set we used was comprised of both training and testing 
samples. More specifically, the bone marrow specimen consisted 
of 38 training samples (27 ALL and 11 AML) and 34 testing 
samples. These 34 test samples (20 ALL and 14 AML) are prepared 
using different experimental conditions and were isolated from 
either bone marrow (24) or by blood sample collection (10). 
In total, the dataset consisted of 7129 target genes. Minimum 
Redundancy and Maximum Relevance (mRMR) technique was 
used a way to isolate the most significant gene products, as it is 
well established in the field [32]. The mRMR approach yielded 
the top five genes for further experiments (Figure 3 and Table 1). 
For the training phase, the MSE curves of different approaches 
are shown in Figure 4.

The Euclidean kernel out performs the cosine kernel achieving 
a minimum MSE of 0.1033. The cosine kernel attained an MSE 
of 0.6934. The proposed method is able to undergo dynamic 
adaptation of the diagonal weighting matrix achieving an MSE of 
0.5480. The Table 1 present the training accuracy of each of the 
cases studied. One important note is that in all cases, the training 
accuracy achieved is 100% for the training samples. However, a 
better evaluation for predictive systems is to look at the outcome 
of the testing stage, i.e., the unseen samples.

Even though, the Euclidean kernel initially achieved a high training 
accuracy in the training stage, its performance in the testing stage 
was relatively low at 58.82%. Therefore, the Euclidean kernel was 
likely over trained on the training samples and therefore incurred 
the problem of over fitting”. The kernel from this study using 
the proposed dynamic approach outperformed the both the 
conventional cosine and Euclidean kernels by a margin of 2.94% 
and 38.24%, respectively (Figure 4).

Conclusion
This work proposes a novel kernel for the Radial Basis Function 
Neural Networks (RBFNN). The proposed kernel is based on 
weighted cosine distance between the input vector and the center 
vectors associated with RBFNN. The weighting is introduced in:

i) the inner product of input and neuron’s center, 

ii) norm of the input vector, and 

iii) norm of the center vector.

We demonstrate how the weighting matrix can be chosen for 

Figure 3 The MSE plots for the channel estimation in the 
presence of correlated input.

Figure 4 The MSE curves for the training phase of the pattern 
classification problem.

Approach Training Accuracy Testing Accuracy
Cosine kernel 100.00% 94.12%

Euclidean kernel 100.00% 58.82%
WC-RBFNN 100.00% 97.06%

Table 1 Results for the pattern classification problem.
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different applications to optimize the performance of the WC-
RBF. As case studies, we present the PDZ domain classification 
and the channel estimation problem with correlated inputs. 
We also design an adaptive technique to update the weighting 
matrix for an arbitrary data using the approach of steepest 
descent optimization. For the validation of our adaptive design, 
we present the problem of Leukemia prediction. Simulations 
that were presented seem to validate the performance of the 

proposed RBFNN kernel in contrast to the conventional RBFNN 
kernels.
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