
iMedPub Journals
http://www.imedpub.com

Research Article

Journal of Molecular Biology and Biotechnology 
2017

Vol. 2 No. 2: 4

1© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://www.imedpub.com/molecular-biology-and-biotechnology

Muhammad Moinuddin1,2, 
Imran Naseem3,4, 
Wasim Aftab1, 
Sidi A Bencherif5,6,7 and 
Adnan Memic1

1 Electrical and Computer Engineering 
Department, King Abdul Aziz University, 
Saudi Arabia

2 Center of Excellence in Intelligent 
Engineering Systems (CEIES), King 
Abdulaziz University, Saudi Arabia 

3 School of Electrical, Electronics and 
Computer Engineering, University of 
Western Australia, Australia

4	 College	of	Engineering,	Karachi	Institute	
of Economics and Technology, Karachi, 
Pakistan

5 Laboratory of Biomechanics and 
Bioengineering (BMBI), Sorbonne 
Universities,	University	of	Technology	of	
Compiègne (UTC), Compiègne, France

6 Harvard John A Paulson School of 
Engineering and Applied Sciences, 
Harvard University, Cambridge, USA

7   Department of Chemical Engineering, 
Northeastern University, Boston, MA, 
USA

Corresponding author: Adnan Memic

 amemic@kau.edu.sa

Center of Nanotechnology, King Abdul Aziz 
University, Saudi Arabia.

Tel:  617-373-4495

Citation: Moinuddin M, Naseem I, Wasim A, 
et al. A Weighted Cosine RBF Neural Networks. J 
Mol Biol Biotech. 2017, 2:2.

Introduction
Broomhead	 and	 Lowe	 were	 the	 first	 to	 introduce	 the	 Radial	
basis	 function	neural	 network	 (RBFNN).	 Its	 concept	was	 based	
on the Cover’s Theorem [1,2]. The RBFFNN is known as universal 
approximate due to its remarkable performance in the problem 
of	 function	 approximation	 [3-5].	 Originally,	 the	 RBF	 networks	
were	 designed	 for	 data	 interpolation	 in	 a	 higher	 dimensional	
space	 [5].	 However,	 its	 applications	 are	 in	 wide	 area	 of	
engineering	and	it	has	been	used	as	an	important	tool	for	function	
approximation,	 prediction,	 estimation,	 and	 system	 control	 [4-
9]. The main advantage of RBF compared to other algorithms 
based	on	neural	networks	is	the	simplicity	of	computation	of	its	
network parameters [5]. The RBF networks perform the complex 
nonlinear mapping of the data that enables a fast, linear, and 
robust	 learning	 mechanism	 without	 significant	 computational	
cost [2]. 

Some of the most commonly used basis kernels are: Gaussian 
kernels	 [2],	 multi-quadric	 kernels	 [2],	 inverse	 multi-quadric	
functions	[2],	thin-plate	spline	kernels	[5],	and	cosine	kernels	[10]	
etc.	However,	the	selection	of	a	proper	kernel	is	highly	problem-
specific.	A	usual design of an RBFNN involves the learning of the 

centers of the kernels, the widths of the kernels, and weights 
of the networks [2]. In this context, a huge amount of work is 
carried out in the literature [11-16]. 

The most commonly used RBF kernel is the Gaussian kernel 
which employs the Euclidian distances between the feature 
vectors and the centers of the kernels [2]. However, it is shown in 

Received: May 09, 2017; Accepted: May 17, 2017; Published: May 25, 2017

Abstract
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structure	prediction	to	disease	prediction.	This	work	focuses	on	the	design	of	a	
novel	kernel	for	the	Radial	Basis	Function	Neural	Networks	(RBFNN).	The	proposed	
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center	vectors	associated	with	RBFNN.	The	weighting	is	introduced	in:	i)	the	inner	
product of input and neuron’s center, ii) norm of the input vector, and iii) norm of 
the	center	vector.	We	demonstrate	how	the	weighting	matrix	can	be	chosen	for	
different	applications	to	optimize	the	performance	of	the	WC-RBF.	As	case	studies,	
we	present	the	PDZ	domain	classification	and	the	channel	estimation	problem	with	
correlated	inputs.	We	also	design	an	adaptive	technique	to	update	the	weighting	
matrix	for	an	arbitrary	data	using	the	approach	of	steepest	descent	optimization.	
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[10] that there can be scenarios where cosine distances are more 
significant	in	separating	the	features	compared	to	the	Euclidean.	
Thus, the work in [10] developed an RBF kernel by employing a 
linear	combination	of	Gaussian	kernel	and	cosine	distance	based	
kernel.	 Later,	a	time	varying	combination	of	 the	 two	kernels	 is	
proposed in [17] to improve the overall performance. In this 
work, a weighted cosine RBF kernel is proposed in which the 
conventional	 cosine	distance	 is	weighted	by	a	diagonal	matrix.	
We	 show	 that	 the	 weighting	 matrix	 can	 either	 be	 application	
dependent	 or	 it	 can	 be	 made	 adaptive	 via	 steepest	 descent	
based	optimization.	For	the	first	case,	we	present	two	different	
applications:	 (1)	 PDZ	 domain	 classification	 and	 (2)	 Channel	
estimation	 for	 correlated	 inputs.	 For	 the	 second	 case,	 we	
develop	a	mechanism	to	recursively	update	the	weighting	matrix	
for	 the	 weighting	matrix	 via	 steepest	 descent	minimization	 of	
mean	square	error	(MSE)	cost	function.	This	adaptive	weighting	
matrix	based	RBF	kernel	is	used	for	Leukemia	disease	prediction	
problem.

The	main	contributions	of	this	study	are	as	follows:

1)	 In	Section (Proposed Weighted Cosine Rbfnn (Wc-Rbfnn)), 
we propose a novel weighted cosine RBF kernel where the 
weighting	 is	 introduced	 in:	 i)	 the	 inner	product	of	 input	
and neuron’s center, ii) norm of the input vector, and iii) 
norm of the center vector.

2)	 In	 Section	 (Choice	 of	 Weighting	 Matrix	 for	 the	 Wc-
Rbfnn),	we	show	how	the	weighting	matrix	can	be	chosen	
differently	for	different	applications	in	order	to	optimize	
the performance of the WC-RBFNN. For that purpose, we 
present	two	examples:	the	PDZ	domain	classification	and	
the	channel	estimation	problem	with	correlated	inputs.

3)	 In	Section	(Design	of	an	Adaptive	Weight	for	Wc-Rbfnn),	
we	 develop	 an	 automatic	 mechanism	 to	 update	 the	
weighting	matrix	for	an	arbitrary	data	using	the	approach	
of	 steepest	 descent	 optimization.	 For	 the	 validation	 of	
our	adaptive	design,	we	present	the	problem	of	Leukemia	
disease	prediction.

The	paper	is	organized	as	follows:	Following	this	introduction,	we	
provide	an	overview	of	the	conventional	RBF	kernels	in	Section	
(Overview	of	the	Conventional	Rbf	Kernels).	In	Section	(Proposed	
Weighted Cosine Rbfnn (Wc-Rbfnn)), we develop the proposed 
weighted	 cosine	 RBF	 kernel.	 The	 choice	 of	 weighting	 matrix	
for	the	WC-RBFNN	is	discussed	 in	Section	(Choice	of	Weighting	
Matrix	 for	 the	 Wc-Rbfnn).	 In	 Section	 (Design	 of	 an	 Adaptive	
Weight	for	Wc-Rbfnn),	an	adaptive	strategy	is	developed	to	make	
the	weighting	matrix	of	the	WC-RBFNN	time	varying.	Simulation	
results	are	presented	in	Section	(Simulation	Results).	Finally,	the	
concluding remarks are	provided	in	Section	(Conclusion).

Overview of the Conventional Rbf 
Kernels
In	this	section,	we	provide	an	overview	of	existing	RBFNNs	which	
are	conventionally	used	in	the	literature.	The	RBFNN	transform	
the	nonlinear	classification	to	linear	classification	by	mapping	the	

data into a higher dimensional space using some nonlinear kernel. 
According	to	Covers	theorem,	translation	of	features	from	lower	
dimension	to	a	higher	dimension	simplifies	the	classification	task	
via	linear	separation	[1].	

The RBFNN consists of three layers: an input layer, a hidden 
layer, and a linear output layer as shown in Figure 1. All inputs 
are connected to each hidden neuron. The input vector is passed 
through the hidden layer which consists of nonlinear mapping 
function.	The	ith neuron of the hidden layer employs a nonlinear 
kernel (denoted by ( )i ix cφ −  ) to compute distance between 
the input vector x and its center vector ci. The nonlinear kernels 
are	of	different	types	which	can	be	categorized	broadly	into	two:	
Euclidian Distance based and Cosine Distance based. These are 
discussed	in	the	ensuing	sub-sections.

A. Euclidian distance based RBF kernels

Most commonly used RBF kernels are as follows [2],

Multiquadrics:

Most commonly used RBF kernels are as follows [2],
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where	Ƭ	>	0,	is	a	constant	and	β	is	spread parameter. 

It can be seen from the above examples that the RBF kernels are 
usually	function	of	the	Euclidean	distance	between	input	and	the	
center vectors. These distances are then mapped via some non-
linear	functions	such	as	Gaussian	function	given	in	(3).	Here,	the	
parameter	β	plays	the	role	to	adjust	the	sensitivity	of	the	kernel.	
For	example,	its	larger	value	will	make	the	kernel	less	sensitive	to	
a given input and vice versa.

B. Cosine distance based RBF kernels

One	 recent study [10] showed that there are scenarios where 
Euclidian	distance	becomes	ineffective	way	of	distinction.	Thus,	
a cosine distance based RBF kernel was proposed in [10] which it 
evaluates the cosine distance between the input vector and the 
RBF’s center vector as follows:

Figure 1 Computation	of	history	matrix	via	Bigram	global	
history matrix.
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where < xci	>	is	showing	the	dot	product	of	vectors	x and ci. 

The term x ∑   in (4) represents the weighted norm of the 
vector x	which	can	be	evaluated	using	the	following	definition:

2 Hx x x∑= ∑                                                                                                                                                      (5)

It is argued in [10] that the cosine distance based kernel is more 
suitable	when	the	lengths	of	vectors	are	very	close	yet	differ	in	
their	inclinations.	Later	this	work	was	extended	to	a	time	varying	
convex	 combination	 of	 Euclidian	 distance	 based	 and	 cosine	
distance based kernels as follows [17]:
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where	α(n)	is	a	time	varying	mixing	parameter	which	is	adapted	
by	minimizing	the	mean	square	error	cost	function	[17].

Proposed Weighted Cosine Rbfnn (Wc-
Rbfnn)
In this study, we propose a weighted cosine RBF kernel in which 
weight to the dot product and to the norm of the individual 
vectors are provided which result in the following kernel:

( , )
H

i
i i

i

x cx c
x c

φ ∑
=

∑ ∑    

                                                                                                                             (7)        

where	∑	 is	a	diagonal	weight	matrix	with	σm as its mth diagonal 
element, xH∑ci	is	the	weighted	correlation	between	vectors	x	and	
ci such that:

*
,

1
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H

i m m i m
m

x c x cσ
=

∑ =∑                                                                                                                                       (8)

where M is the length of the vectors and xm and ci,m are the mth 
elements of x and ci,	respectively.	

The proposed RBF kernel given in (7) is named as Weighted 
Cosine RBF (WC-RBFNN).

**1The	notation	 ()H	 denotes	 conjugate	 transposition	operation.	
For	the	real	input	vectors,	this	is	equivalent	to	taking	transpose	
only [18].

Remarks
• The	weighting	matrix	∑	is	playing	a	role	of	giving	specific	

importance	to	certain	elements	in	the	evaluation	of	cosine	
distance. In order to understand this further, we consider 
the	weighted	correlation	between	the	two	vectors	x and ci 
defined	in	[8].

 • It can be seen that the parameter σm	 is	 giving	 different	
weights to the mth term *

,m i mx c in	this	summation.	Thus,	if	
the	correlation	between	x and ci is dominant due to certain 
terms, higher weights to these terms can increase their 
impact	on	the	overall	summation	which	eventually	results	
in the enhancement of the cosine distance between the 
two vectors. Hence, the output of those neurons will be 
higher	which	are	closer	to	specific	input	in	terms	of	cosine	
distance.

• Consider the two extreme scenarios:

a) If x = ci	 (showing	 full	 positive	 correlation),	 the	WC-
RBFNN’s output for the ith neuron will be

2
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b) If x = -ci (showing	 full	 negative	 correlation),	 the	WC-
RBFNN’s output for the ith neuron will be 
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Thus, we conclude that the output of the WC-RBFNN’s neuron 
lies in the range [-1, +1] where extreme values show the full 
negative	and	full	positive	correlation	cases,	respectively.

Choice of Weighting Matrix for the Wc-
Rbfnn
There	can	be	an	obvious	question	as	how	to	choose	the	diagonal	
weighting	matrix.	This	choice	mainly	depends	on	the	application	
and	which	way	the	proposed	RBF	kernel	is	utilized.	Some	of	the	
examples	of	specific	applications	are	discussed	 in	the	following	
sub-sections.

A. Application in PDZ domain classification

PDZs are structural domains that are contained in numerous 
otherwise unrelated proteins. In general, they consist of 
approximately 90 amino acids and in the human genome are 
considered to be the most common protein domain [19]. PDZ 
domains are mainly recognized for their mediator role in the 
assembly of receptors at the cellular membrane interface [19-
24]. Although, there are several PDZ domain classes; but, the 
two	most	dominant	recognition	patterns	are	X-S/T-S-φ	for	Class	I	
PDZ domains and X-φ-X-φ	for	Class	II	PDZ	domains	[25,26].	There	
are	many	works	in	the	field	of	protein	and	PDZ	domain	analysis.	
One	 of	 the	 recent	 work	 in	 [27],	 topological	 predictions	 for	
integral membrane transport proteins as well as guides for the 
development	 of	more	 reliable	 topological	 prediction	 programs	
for	family-specific	characteristics	are	provided.	In	another	work	
by	 [28],	 the	 response	surface	methodology	 (RMS)	and	artificial	
neural	network	(ANN)	modeling	were	applied	to	optimize	medium	
components	 for	 spinosad	 production.	 The	 Genetic	 Algorithm	
(GA)	 is	 used	 for	 ANN’s	 input	 optimization.	 They	 conclude	 that	
the	hybrid	ANN/GA	approach	provides	a	viable	alternative	to	the	
conventional	RSM	approach	for	the	modeling	and	optimization	of	
fermentation	processes.	Related	to	protein	study,	another	work	
in	[29]	provides	molecular	modelling	of	CtHtrA	protein	active	site	
structure	 identified	 putative	 S1S3	 sub	 site	 residues	 I242,	 I265,	
and V266.

In our work, we focus on classifying the Class I PDZ domains (i.e., 
having X-S/T-S-φ	pattern)	and	Class	II	PDZ	domains	(i.e.,	having	
X-φ-X-φ	pattern)	which	were	 reported	 in	 [25,26]	using	a	novel	
history	weighted	cosine	RBF	NN.	Now,	consider	first	the	features	
we have used	in	our	classification	task.	The	set	X	=	A,	B,	C,	D,	E,	F,	
G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y is all possible amino acids 
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(AAs). A protein	sequence	of	 length	M,	it	has	M-1	bigrams.	For	
example, ABCDEFG has the following bigrams: AB, BC, CD, DE, 
EF,	and	FG.	We	computed	the	bigram	normalized	frequency	of	
amino	acids	in	a	PDZ	sequence	by	counting	the	number	of	times	
that bigram appears in the PDZ domain and dividing by M-1. To 
design	 the	 required	 weighting	 matrix	 ∑,	 we	 first	 evaluate	 the	
Bigram (Figure 1).

Global History Matrix (BGHM) denoted as Gk for the kth class. In 
order	to	compute	BGHM,	we	first	aligned	our	dataset	separately	
for	Class	I	and	Class	II	PDZ	domains	using	CLUSTALX	2.0	[30].	The	
concept of BGHM is illustrated in Figure 1, where we compute 
the	global	frequencies	of	every	existing	bigram	for	a	set	of	PDZ	
domains	sequences.	Since,	we	are	dealing	with	three	classes	of	
PDZ; therefore, we have three BGHMs: GI and GII. Every Column in 
Gk (k	=	I, II)	indicates	normalized	frequencies	of	all	possible	bigrams	
at	that	position	in	every	PDZ	domain.	To	ease	the	computational	
burden, we set the number of columns in Gk to the length of the 
longest	PDZ	domain	sequence	for	kth class.	Once	the	BGHM	for	
each class is evaluated, a history weight matrix (H) is computed 
as shown in Figure 2 for a given PDZ domain. To understand the 
computation	 of	 the	 history	matrix	H, consider the example of 
the PDZ domain ETRREIKLFKGPKGLGFSIAGGRRNQTKIIDGGA. In 
this	 PDZ	 sequence,	 the	bigram	 ”RR”	 appears	 3rd, 23rd, and 35th 
positions.	 Assuming that the corresponding elements in the 
BGHM Gk has entries 3 0.04RRf = , 23 0RRf = , 35 0.059RRf = ,	respectively.	

Thus, the element in the history matrix H corresponding to the 

bigram	 RR	 is	 calculated	 by	 the	 summation	 of 3 0.04RRf = , 23 0RRf =

, 35 0.059RRf = , i.e., 3 23 35 0.099RR RR RR RRF f f f= + + = (as depicted by the 

Figure 1). 

Finally, this history weight matrix H	 is	 used	 as	 the	 weighting	
matrix for the RBF, i.e., ∑=H	and	the	resulting	RBF	 is	named	as	
History weighted cosine RBFNN (HWC-RBFNN).

B. Application in channel estimation for correlated inputs

In	this	section,	we	show	a	a	different	domain	of	application	for	
the	proposed	WC-RBFNN,	that	 is,	 the	channel	estimation	using	
the	WC-RBFNN.	Considering	the	problem	of	channel	estimation	
in the presence of correlated inputs x. If the channel to be 
estimated	is	represented	as	an	M×1	vector	h, the output of the 
channel	at	iteration	n	can	be	expressed	as	o(n)=xHh+v(n), where 
v(n)	is	a	zero	mean	i.i.d.	noise	sequence	with	variance	

2
vσ and xi 

is	M×1	zero	mean	correlated	input	vector	with	correlation	matrix	
Rx, i.e., E[xxH]	=Rx.	The	goal	of	the	RBF	is	to	estimate	the	unknown	
channel	by	minimizing	the	cost	function	

J(w)=E[e(n)2]

where	e(n)	is	the	estimation	error	given	by;

e(n)=d(n)-y(n)                                                                                 (11)                                                                                                                                

where d(n) and y(n) are the desired response and the output of 
the	RBF,	respectively.	

The	 desired	 response,	 in	 the	 case	 of	 channel	 estimation,	 is	
d(n)=o(n)=xHh+v(n) while the output of the RBF can expressed 
as	y(n)=φT(x)w(n)	The	estimation	of	the	channel	 is	obtained	via	
recursive	 computation	 of	 the	 RBF	 weights	 w(n)	 via	 steepest	
descent	optimization	as	follows:	

w(n+1)=w(n)+µe*(n)φT(x)                                                                  (12)           

It	 is	 known	 fact	 from	 the	 theory	 of	 adaptive	 filtering	 that	 the	
convergence	speed	of	steepest	descent	optimization	is	severely	
degraded	 by	 the	 input	 correlation	 [18].	 For	 example,	 if	 the	
adaptation	 is	 used	 by	 minimizing	 the	 mean-square-error	 cost	

function,	the	step-size	µ	is	bounded	as
max

20 µ
λ

< <  [18], where

λmax	is	the	maximum	eigenvalue	of	the	input	correlation	matrix	Rx. 

Thus,	 higher	 the	 correlation	 among	 the	 inputs,	 slower	 is	 the	
learning	speed	for	the	adaptation.	The	same	can	be	true	for	the	
case	of	RBF	based	channel	estimation.	In	order	to	deal	with	this	
issue,	it	is	proposed	to	set	the	weighting	matrix	∑	as	follows:

1
xR−∑ =                                                                                                                                                      (13)

Knowing	the	fact	that	the	input	correlation	matrix	is	Hermitian,	
we	can	factorize	the	∑	as2

1 1/2 /2H
x x xR R R− − −∑ = =                                                                       (14)                                                                                                                            

**2The	representation	RH/2	is	a	short	notation	for	(R1/2)H.

By doing so, we can see that the output of the proposed RBF 
kernel for the ith neuron is transformed to

1 1

1/2 /2

( , )
x x

H H
x x i

i i
iR R

x R R cx c
x c

φ
− −

− −

=
   

                                                                                                                                         (15)

Now,	if	we	define	 /2H
xx R x−=  and  /2H

x ic R c−= , we can write 

1/2H H
xx R x− −= and 

1/2H H
xc R c− −=

As a result, the above expression can be reformulated as:Figure 2 AUC	Plots	after	holdout	cross-validation	for	BP	FFNN,	
ED-RBFNN, CR-RBFNN and WC-RBFNN.
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The	correlation	matrix	of	transformed	vector	 x can be evaluated 

as:
/2 1/2 /2 1/2[ ] [ ] IH H H H

x x x x x xR E xx R E xx R R R R− − − −= = = =                                                (17)

which proves that the input vector is transformed to a white 
vector	with	the	choice	of	weighting	matrix	given	in	(14).	Hence,	
the transformed output of the RBF given in (16) is now dealing 
with white input vectors which promise improvement in the 
convergence speed of the proposed RBFNN.

Design of an Adaptive Weight for Wc-
Rbfnn
In	 this	 section,	we	 aim	 to	 design	 the	mechanism	 to	make	 the	
weighting	 matrix	 ∑	 time	 varying.	 To	 do	 so,	 we	 employ	 the	
steepest	 descent	 approach	 to	 minimize	 the	 mean-squares-
error	(MSE)	cost	function,	i.e.,	J(∑)=e2(n), where e(n)=d(n)-y(n) is 
the error at the output for the nth	 iteration.	We	consider	more	
general	scenario	in	which	every	neuron	has	different	weighting	
matrix.	 Thus,	 the	 steepest	descent	 recursion	 for	 the	weighting	
matrix of ith neuron is given by

( 1) ( ) ( )s i ii i
n n Jµ ∑+ = − ∇ ∑∑ ∑                                                                                                                          (18)

where ( )i J i∑∇ ∑ represents	the	gradient	of	cost	function	J(∑i) 

w.r.t	to	the	weighting	matrix	∑i.

Since, ∑i is a diagonal matrix such that diag (∑i)=[σi,1, σi,2,… σi,M], we 
can evaluate the ( )J∑∇ ∑ as
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whose mth diagonal element can be evaluated as

( )
,

,m

2 ( ) ( )i
m i m

i

J
e n w n σ

σ
∂ ∑

= −
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where wm(n) is the mth element in the weight vector w(n) and 
,i mσ
	is	defined	as
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which is found to be
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Thus,	 the	 adaptive	 weight	 matrix	 of	 the	 ith neuron can be 
computed	via	Equations	(18),	(19),	(20),	(21)	and	(22).	Hence,	the	

resulting	WC-RBFNN	utilizes	an	adaptive	weighting	matrix	and	it	
is abbreviated as AWC-RBFNN.

Simulation Results
In	 this	 section,	 we	 present	 three	 examples	 to	 investigate	 the	
performance of the two proposed variants of the WC-RBFNN in 
previous	sections.	These	examples	are	discussed	in	detail	in	the	
ensuing	subsections.

A. PDZ domain classification

In order to validate the performance of our algorithm, we 
perform	a	comparative	study	using	holdout	cross	validation	and	
compare the performance of the proposed WC-RBFNN with the 
conventional	variants	of	the	RBFNN,	that	 is,	Eucledian	Distance	
based RBF (ED-RBFNN), Cosine Distance based RBF (CDRBFNN). 
For	 the	WC-RBFNN,	we	 have	 used	 the	 two	 types	 of	weighting	
matrix:	 One	 proposed	 in	 Section	 (Choice	 of	 Weighting	 Matrix	
for	 the	 Wc-Rbfnn-	 Application	 in	 PDZ	 Domain	 Classification),	
i.e., History Weighted WC-RBFNN or simply HWC-RBFNN and 
the	other	proposed	in	Section	(Design	of	an	Adaptive	Weight	for	
Wc-Rbfnn),	i.e.,	AWC-RBFNN	with	adaptive	weighting	matrix.	The	
data set of the PDZ domains we used are taken from the work in 
[25,26] which has two classes: Class I with 45 PDZ domains and 
Class II with 20 PDZ domains. This data set is divided into two 
sets:	 training	 and	 testing.	 In	 each	 run,	we	used	 training	 set	 to	
train	the	weights	for	NN	and	the	testing	set	is	used	to	evaluate	
the	classifiers	accuracy.	 Since	Area	Under	Curve	 (AUC)	 is	more	
discriminating	measure	than	accuracy,	we	used	AUC	to	compare	
the	effectiveness	of	the	two	algorithms.	Since	our	feature	vectors	
are	 high	 dimensional	 the	 ED	 based	 classifier	 suffers	 with	 the	
challenge	of	dimensionality	which	is	also	evident	in	the	ROC	curve	
plots3 presented in Figure 2,	that	3The	ROC	curves	are	the	curves	
for	true	positive	rate	(TPR)	vs	false	positive	rate	(FPR)	shows	the	
comparative	ROC	curve	for	the	four	RBF	based	classifiers:	ED-RBF,	
CD-RBF, HWC-RBF, and AWC-RBF. The issue of dimensionality 
was	so	critical	 that	 the	conventional	ED-RBF	could	not	manage	
it,	yielding	a	poor	AUC	0.543.	The	CD	RBF	performs	better	with	
AUC	of	0.759.	The	AUC	of	0.842	for	the	adaptive	weighting	based	
AWC-RBF	shows	its	better	performance	compared	to	the	ED-RBf	
and the CD-RBF. However, the HWC-RBF achieves the highest 
AUC	of	0.913.	This	shows	that	the	proper	selection	of	weighting	
matrix can improve the overall performance and it can perform 
even	better	than	the	adaptive	weighting	matrix	design	(Figure 2).

**3The	ROC	curves	are	the	curves	for	true	positive	rate	(TPR)	vs	
false	positive	rate	(FPR).

B. Channel estimation in the presence of correlated inputs

Next,	we	investigate	the	proposed	RBFNN	for	a	channel	estimation	
problem	with	an	unknown	channel	selected	as	h=[0.227,	0.460,	
0.688, 0.460, 0.227]T. The RBFNN used in this experiment has 10 
numbers of neurons at the hidden layer. The input to the RBFNN 
and unknown channel is an M dimensional correlated complex 
Gaussian	input	which	is	generated	with	the	following	correlation	
matrix:



ARCHIVOS DE MEDICINA
ISSN 1698-9465

2017
Vol. 2 No. 2: 4

Journal of Molecular Biology and Biotechnology 

6 This article is available in: http://www.imedpub.com/molecular-biology-and-biotechnology

2 1

2

2 3

1 2 3

1
1

1

1

M
c c c

M
c c c

M
c c c

M M M
c c c

R

α α α
α α α
α α α

α α α

−

−

−

− − −

 
 
 
 =
 
 
  











where	0	<	αc <	1	is	the	factor	that	controls	the	correlation	between	
the regressor elements. 

In this experiment, the input vector has the same length of 
that	of	the	channel,	that	is,	M=5.	We	set	the	SNR	to	20	dB.	We	
compare	the	MSE	performance	of	the	conventional	ED-RBFNN,	
CD-RBFNN,	the	whitening	based	WC-RBFNN	proposed	in	Section	
(Choice	 of	 Weighting	Matrix	 for	 the	Wc-Rbfnn-	 Application	 in	
Channel	Estimation	for	Correlated	Inputs)	and	the	AWC-RBFNN	
proposed	in	Section	(Design	of	an	Adaptive	Weight	for	Wc-Rbfnn)	
and the result is reported in Figure 3. It can be easily seen that 
the proposed whitening based WC-RBF out performed all of its 
counterparts in both convergence speed and the steady-state 
error.	 This	 indicates	 that	 the	 knowledge	 of	 weighting	 matrix	
for	 specific	 application	 can	 improve	 the	 performance	 and	 its	
performance	is	even	better	than	that	of	the	AWC-RBF.

C. Prediction of leukemia cancer

In this section,	 we	 present	 application	 from	 the	 field	 of	
bioinformatics,	specifically,	using	gene	microarray	data	as	a	tool	
to predict cancer. Using the standard Leukemia ALL/AML data 
[31],	 we	 aimed	 to	 develop	 a	 method	 of	 Leukemia	 prediction.	
The	data	set	we	used	was	comprised	of	both	training	and	testing	
samples.	More	specifically,	the	bone	marrow	specimen	consisted	
of	 38	 training	 samples	 (27	 ALL	 and	 11	 AML)	 and	 34	 testing	
samples. These 34 test samples (20 ALL and 14 AML) are prepared 
using	different	experimental	conditions	and	were	isolated	from	
either	 bone	 marrow	 (24)	 or	 by	 blood	 sample	 collection	 (10).	
In total, the dataset consisted of 7129 target genes. Minimum 
Redundancy	 and	Maximum	 Relevance	 (mRMR)	 technique	 was	
used	a	way	to	isolate	the	most	significant	gene	products,	as	it	is	
well	 established	 in	 the	field	 [32].	 The	mRMR	approach	yielded	
the	top	five	genes	for	further	experiments	(Figure 3 and Table 1). 
For	the	training	phase,	the	MSE	curves	of	different	approaches	
are shown in Figure 4.

The Euclidean kernel out performs the cosine kernel achieving 
a	minimum	MSE	of	0.1033.	The	cosine	kernel	attained	an	MSE	
of 0.6934. The proposed method is able to undergo dynamic 
adaptation	of	the	diagonal	weighting	matrix	achieving	an	MSE	of	
0.5480. The Table 1 present the training accuracy of each of the 
cases	studied.	One	important	note	is	that	in	all	cases,	the	training	
accuracy achieved is 100% for the training samples. However, a 
better	evaluation	for	predictive	systems	is	to	look	at	the	outcome	
of	the	testing	stage,	i.e.,	the	unseen	samples.

Even	though,	the	Euclidean	kernel	initially	achieved	a	high	training	
accuracy	in	the	training	stage,	its	performance	in	the	testing	stage	
was	relatively	low	at	58.82%.	Therefore,	the	Euclidean	kernel	was	
likely over trained on the training samples and therefore incurred 
the	 problem	 of	 over	 fitting”.	 The	 kernel	 from	 this	 study	 using	
the proposed dynamic approach outperformed the both the 
conventional	cosine and Euclidean kernels by a margin of 2.94% 
and	38.24%,	respectively (Figure 4).

Conclusion
This	work	proposes	a	novel	kernel	for	the	Radial	Basis	Function	
Neural Networks (RBFNN). The proposed kernel is based on 
weighted cosine distance between the input vector and the center 
vectors	associated	with	RBFNN.	The	weighting	is	introduced	in:

i) the inner product of input and neuron’s center, 

ii) norm of the input vector, and 

iii) norm of the center vector.

We	demonstrate	 how	 the	weighting	matrix	 can	 be	 chosen	 for	

Figure 3 The	 MSE	 plots	 for	 the	 channel	 estimation	 in	 the	
presence of correlated input.

Figure 4 The	MSE	curves	for	the	training	phase	of	the	pattern	
classification	problem.

Approach Training Accuracy Testing Accuracy
Cosine kernel 100.00% 94.12%

Euclidean kernel 100.00% 58.82%
WC-RBFNN 100.00% 97.06%

Table 1	Results	for	the	pattern	classification	problem.
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different	 applications	 to	 optimize	 the	performance	of	 the	WC-
RBF.	As	case	studies,	we	present	 the	PDZ	domain	classification	
and	 the	 channel	 estimation	 problem	 with	 correlated	 inputs.	
We	also	design	an	adaptive	technique	to	update	the	weighting	
matrix for an arbitrary data using the approach of steepest 
descent	optimization.	For	the	validation	of	our	adaptive	design,	
we	 present	 the	 problem	 of	 Leukemia	 prediction.	 Simulations	
that were presented seem to validate the performance of the 

proposed	RBFNN	kernel	 in	contrast	to	the	conventional	RBFNN	
kernels.
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