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Abstract
Background: This study is about one of the most important
non-physical consequences of pain; Pain can affect a
patient’s memory and quality of life. Understanding such a
relationship can enable clinicians, friends, family, employers
and coworkers to implement appropriate interventions to
mitigate the consequences of such problems.

Material and methods: The purpose of this study was to
evaluate and compare the results of articles that
investigated different memory tests for various kinds of
pain in animals. Therefore, databases including MEDLINE,
EMBASE, SCOPUS, and Web of Science were searched. The
primary eligibility criteria for inclusion was whether STM
and/or WM were measured as an outcome variable in an
animal study involving neuropathic pain. The risk of bias
criteria for animal studies were applied.

Results: Finally, by removing unrelated articles, 13 studies
met the inclusion criteria. There is sufficient evidence to
support the hypothesis that NP disrupts STM and WM in the
animal model. Such effects are probably due to structural
changes in different areas of the brain, such as the
hippocampus. Lesion side, age and gender hormones can
also play a role in mediating hypersensitivity to pain and its
effect on learning and memory.

Conclusion: The results of studies have shown that pain can
cause STM and WM impairment. The small number of
articles on the relationship between acute pain and
memory, as well as studies that have examined the
structural relationship between the brain and memory and
pain, are the main limitations of this study.

Keywords: Pain; Memory; Short term Memory; 
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Background
Although ‘pain’ is difficult to define, the IASP latest definition

is: an unpleasant sensory and emotional experience associated
with actual or potential tissue damage,” and that the
accompanying notes to a bulleted list containing the etymology
[1]. In animals, pain can be measured through behavior [2]. If
pain is a purely physical experience, the only behavioral changes
we expect to observe in humans and animals are avoidance,
such as avoiding contact or movement in the affected area.
Cognitive functions would be expected to remain unaffected but
according to published results, cognition and behavior also
change after pain [3-8].

Neuropathic pain (NP) is a type of pain that is associated with
damage to the central or peripheral
nervous system and may detect in areas with no tissue damage [
9]. Its symptoms include hyperalgesia (increased sensitivity to
pain) and allodynia (Sensitive to pain with stimuli that are not
painful) and are usually accompained by cognitive and
emotional complaints such as confusion, anxiety and depression
[1,9-10]. Recent clinical studies have reported  that patients with
pain also suffer from memory deficits resulting in impairments
in their daily life activities to such an extent that it negatively
affects their quality of life [6,8,11].

In studies of the hippocampus of animal models of chronic
pain, some histological changes have been reported in areas
which are primarily related to stress depression and learning but
also play a causal role in memory [12-14]. On the other hand,
studies in humans and animal models have shown metabolic
and morphological changes occurs in the brain with pain which
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may lead to memory loss [15]. Pain induced memory loss has 
recently attracted the attention of researchers.

Classically, memory is generally divided into two categories; 
shortterm memory (STM) and longterm memory (LTM) ([16,17].  
Currently, this classification is considered a basic principle in 
modern cognitive psychology [18]. Some researchers consider 
STM and working memory (WM) to be different theoretical 
concepts reflecting different cognitive functions [19]. It is argued 
that STM relates to unprocessed information whilst WM is 
where some level of interpretation (“manipulation”) is involved. 
However, correlation studies have not been able to separate 
both constructs consistently and there is evidence of large or 
even complete overlap [19,20].

Studies have shown that impairment of both STM and WM 
reduce person general aptitudes and interfere with their daily 
life [21,22].  For  example, certain situations, such as intension, 
depend on WM [10]. WM is also sometimes applied to a much 
broader concept. For example, long-term information storage is 
attributed to working memory. In addition, many of our day to 
day tasks rely on WM [23-25]. Other WMrelated functions 
include reasoning, mindfulness, quick and fluid reasoning, 
coordinated processing, intelligent and attention.

STM is thought to hold symbols that are not yet present in 
LTMand its impairment will have lasting effects. The ability to 
learn new relations between familiar stimuli, new words and 
new digit arrangements is impaired in patients suffering from 
STM disorders [6].

Despite the above general differences, in current literature, 
the terms STM and WM tend to be used interchangeably and 
inconsistently. In this study, we treated the two constructs as 
being equivalent unless the researchers made specific 
distinctions between STM and WM.

There are review articles on the relationship between 
memory and pain, especially the works of Sandkühler [26], 
Cunha [27], Almeida [28], Liu [29] and Moriarty [30] however; 
these have not been systematic reviews. 

Of course, there have been review studies that have 
looked at the relationship between pain and memory in 
human particularly by Berryman [31] and Mazza [32], but a 
systematic review of animal studies offers several advantages.

Animal studies have fewer practical limitations that allow for 
more extensive studies. Second, the comparison of animal and 
human studies allows us to evaluate the extent to which animal 
models are applicable to humans. 

In addition, comparisons of human and animal studies 
can highlight technical and conceptual factors that may 
be critical in interpreting observations such as the 
importance of the correlations between pain and memory 
and their causes, drug treatment history, behavior and 
attention. Animal studies allow these factors to be 
considered more closely. Lack of such complementary 
information can lead to erroneous conclusions [32,33].

Materials and methods

Search strategy, inclusion and exclusion criteria and
data extraction

The following electronic databases were used to identify
relevant studies; PubMed, SCOPUS, Web of science, Embase and
Google Scholar. An example of the search strategy (for Web of
Science) is shown in table 1. Searches included all studies up to
April 2, 2020 and language restrictions were not applied. Given
that, the same search strategy does not work in different
databases, so a separate search was written for each database.

Table1: Designed search strategy of applied keywords in Web
of Science.

Pain AND memory AND TS= (“Memory, Short-Term*” OR “Memories, Short-
Term” OR “Memory, Short Term” OR “Short-Term Memories” OR “Short-Term
Memory” OR “Memory, Shortterm” OR “Memories, Shortterm” OR “Shortterm
Memories” OR “Shortterm Memory” OR “Working Memory” OR “Working
Memories” OR “Memory, Immediate” OR “Immediate Memories” OR “Immediate
Memory” OR “Memories, Immediate” OR “Immediate Recall” OR “Immediate
Recalls” OR “Recall, Immediate” OR “Recalls, Immediate”) AND TS=
(“Neuralgia*” or “Neuropathic Pain” OR “Pain” or “Neurodynia” or “atypical
Neuralgia” or “Iliohypogastric Nerve Neuralgia” or “Iliohypogastric Nerve
Neuralgias” or “Paroxysmal Nerve Pain*” or “Perineal Neuralgia” or “Stump
Neuralgia” or “Supraorbital Neuralgia*” or “Vidian Neuralgia*” or “Nerve Pain*” or
“Ilioinguinal Neuralgia*” or “Hyperalgesia*” or “Hyperalgesic Sensations” or
“Mechanical Allodynia” or “Mechanical Hyperalgesia” or “Tactile Allodynia” or
“Allodynia” or “Thermal Hyperalgesia” or “Thermal Allodynia” or “chronic pain*”
or “Widespread Chronic Pain*” or “Nociceptor*” or “Pain Receptor*” or
“Nociceptive Neuron*” or “causalgia” or “Type II Complex Regional Pain
Syndrome” or “CRPS Type II*” or “Deafferentation Pain” or “Causalgia
Syndrome*” or “Somatosensory Disorder*” or “Somatic Sensation Disorder*” or
“Pain Sensation Diminished*” or “Thermal Sensation Disorder*” or “Position
Sense Disorder*” or “Proprioceptive Disorder*” or “Proprioceptive Disorder*” or
“Light Touch Sensation Impairment” or “Pinprick Sensation Diminished*”)

Studies focusing on LTM were excluded. The following is a list
of eligibility criteria that were applied to the remaining articles
returned by the database searches.

Inclusion criteria:

• Peer-reviewed studies based on an animal model involving
pain.

• Study has a no pain control group (intact animals).
• STM or WM using standardized memory tests as an outcome

variable was mesured.

The standardized memory tests found in the studies were
Tmaze, Moris water maze, Figure-8-shaped maze, Novel-object
recognition, Elevated plus-maze, Air-puff passive avoidance,
Object recognition test, Open field (OF), social memory, Novel
location recognition (NLR), and Zero maze.

Initially, two co-authors independently screened the studies
that were returned by the searches based on title and abstract.
Where there was doubt, the full text of article was inspected.
Conflicting eligibility determinations were decided by consensus.
A third reviewer was invited to resolve disagreements between
the 2 reviewers, including for the ROB assessment (see below).

Exclusion criteria were as follows: review articles, in-vitro
studies, articles not sufficiently elevant to experimental Pain and
studies that did not use appropriate memory test, those that did
not report the control group.
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Due to the diversity of pain models and memory tests in
individual studies, pooling of data in a meta-analysis was not
possible.

Risk of bias assessment
The SYRCLE Risk of Bias (ROB) instrument [20], based on the

Cochrane Risk of Bias tool but adapted for animal studies was
also used to objectively assess the quality of the studies that
met the inclusion criteria [21]. This scale consists of 10 items
assessing 5 broad categories (Table 2). The following scale was
used to convert the quantitative measure obtained into a
qualitative assessment: <50% (weak), 50%–69% (fair), 70%–79%
(good), and 80%–100% (very good).

Two independent assessors completed the form for each
study and their answers were compared. Any disagreements
were resolved through discussion or by involving a third
reviewer.

Table2: Characteristics evaluated articles based on SYRCLE’s
ROB tool.

Selection bias:

1 ✓ = Describe the methods used, if any, to generate the allocation sequence in
sufficient detail to allow an assessment whether it should produce comparable
groups. Not describe: x 

2 ✓ = Describe all the possible prognostic factors or animal characteristics, if
any, that are compared in order to judge whether or not intervention and control
groups were similar at the start of the experiment. Were the groups similar at
baseline or were they adjusted? x = Not describe.

3 ✓ = Describe the method used to conceal the allocation sequence in sufficient
detail to determine whether intervention allocations could have been foreseen
before or during enrolment; x = no describe.

Performance bias:

4 ✓ = Evidence of random housing of animals; = unknown housing
arrangement.

5 ✓ = Confirmation of caregivers blinded to intervention; x = no confirmation of
caregivers blinded to intervention.

Detection bias:

6 ✓ = Evidence of random selection for assessment; x = no evidence of random
selection for assessment.

7 ✓ = Evidence of assessor blinded; x = no evidence of assessor blinded.

Attrition bias:

8 ✓ = Explanation of missing animal data; x = no explanation of missing animal
data.

Reporting bias:

9 ✓ = State how selective outcome reporting was examined and what was
found (statistic section)? = insufficient reporting; x = selective reporting.

10 ✓ = Free of other high bias risk (Model of injury, number of animal per group,
animal welfare regulations); = insufficient data to determine risk of other bias.

Results
This search returned 953 results from SCOPUS, 594 from

PubMed, 610 from EMBASE, 505.from Web of science were
selected for more investigations. After removing the duplicates
1634 article remained (Fig 1).

After a final review and remove articles based on predefined
category, 13 related articles were found [14,34-45] (Table3). The
periods of studies were between 1 and 126 days. Ten of them

were performed on rat [14,36-43] and  4  studies investigated on
mice [14,34,44,45]. One  study  performed  on  the  both  rat and
mice [46]. 9 of the 13 reports clearly identified that they
measured WM, while others only mentioned short-term
memory. The following table 4 shows the pain models
employed.

Table3: Abstract of all 13 articles eligible for systematic
review.
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With regards to the short term memory tests, Novel object
recognition  test   was  most popular   popular   [34,41,42,45,59,
60]. But the method of pain induction was different which
prevented from meta-analysis.

Table 4: Pain models employed by the 13 studies that met the
eligibility criteria.

Pain model Animal Reference Total

Spared Nerve
Injury (SNI)

Rat/Mice (38, 48-51, 53,
54, 56, 61)

8

Chronic
constriction
injury (CCI)

Rat (52) 1

Sciatic nerve
injury

Rat (57) 1
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Complex
regional pain
syndrome
(CRPS)

Mice (62) 1

Formalin
Injection

Rat (55) 1

Table 5: Memory tests employed by the 13 studies that met
the eligibility criteria.

Memory Test Animal Reference Total

Novel object
recognition test

Rat/Mice (54, 57, 61, 62) 4

T-maze Rat (47, 49) 2

Figure-8-shaped
maze,

Rat (48) 1

Morris water
maze

Rat (50-52, 61) 4

Eight-arm radial
maze

Rat and Mice (53) 1

Object
recognition test

Rat (55) 1

V-maze test Rat (56) 1

Novel Odor
Recognition Test

Mice (57) 1

Touchscreen Mice (57) 1

Social memory Mice (62) 1

Novel location
recognition

Mice (62) 1

Experimental
timeline

test

Rat (49) 1

With regards to the short term memory tests, novel object
recognition  test  was  most  popular  [34,41,42,45,59,60 ].  But
the method of pain induction was different which prevented
from meta-analysis.

Quality assessment of articles
After scoring the articles based on ROB scale form, it was

found articles were in good and 10 articles in very good quality
(Table4).

Table 6: All articles score based on ROB scale.

St
u
dy

1. 2. 3. 4. 5. 6. 7. 8. 9. 10 %

H
ug
o
Le
ite
-
Al
m
ei
da
(2

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × 90

00
9)

H
ug
o
Le
ite
-
Al
m
ei
da
(2
01
2)

✓ ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ × 80

C
hu
n-
Li
n
M
ai
(2
01
9)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10
0

Or
la
M
ori
art
y
(2
01
4)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10
0

W
en
-
Ji
e
R
en
(2
01
1)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10
0

M
ar
al
Ta
jer
ia
n
(2
01
4)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × 90

Ja
sp
er
A
nd
re
as
en
(2
01
6)

✓ ✓ × ✓ ✓ ✓ × ✓ ✓ × 70

H
el
de
r
C
ar
do
so
-
Cr

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × 90
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uz
(2
01
8)

H
el
de
r
C
ar
do
so
-
Cr
uz
(2
01
4)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × 90

Ila
ria
C
ec
ca
rel
li
(2
00
1)

? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × 90

S
ep
id
eh
S
aff
ar
po
ur
(2
01
7)

✓ ✓ ✓ ✓ ✓ × × ✓ ✓ × 70

St
ef
an
ie
H
ar
dt
(2
01
7)

? ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × 70

H
el
de
r
C
ar
do
so
-
Cr
uz
(2
01
3)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × 90

Discussion and Conclusions
The primary purpose of this study was to investigate the

relationship between pain and memory. The results obtained
from the various methods of pain induction showed that, pain
specially chronic pain caused deficits in STM/WM; spatial
reference memory, learning, spatial reversal, recognition
memory and cognitive flexibility   [14,34-45].  Although
neuropathy status impairs short-term memory, other

intervening variables such as ag, side of body in which pain is
induced and gender are also involved that may worsen the
condition. Age is known to be an important factor that, along
with NP, affects STM as well as motor function. Research has
shown SNI induced behavioral impairments are more noticeable
in middle-aged animals [35].

An intriguing finding was that the effect of pain on emotional
and cognitive functions varied depending on the direction of the
body in which the pain was induced [51]. Side of injury is also
important in the perception of the severity of pain and its
effects on the brain. It was found that left-sided nerve damage
leads to more anxiety and emotional disturbance than similar
right-sided injury. The reason for this finding can be attributed to
the domains available in prefrontal cortex that are more affected
in NP conditions, particularly when the lesions are right-sided.
Left-sided injuries are more likely to affect emotional behavior,
while right-sided injuries affect cognitive presentation [63,64].

In addition, it has been shown that the left and right
hemispheres of the brain process information differently, with
processing in the left hemisphere is more confined while
information processing in the right hemisphere is more
distributed [65]. There is also evidence that activity in the left
and right cerebral hemispheres is associated with different
emotional responses [40], with the right hemisphere
discriminating more for negative emotions and vice versa. Giving
that somatosensory impulses from the left side of the body are
processed by the right hemisphere and vice versa, here, we
speculate that this is a combination of somatosensory
lateralization and valence-specific lateralization leading to the
behavioral differences observed when pain is induced in both
sides of the body. Furthermore, there is evidence that this
lateralization is mediated by gender, whereby women observed
to show more lateral discrimination of negative emotions than
men [66, 67].

Also, a clinical study has shown that pain in the left side of the
body is more likely to be associated with anxiety [68] and the
effect of anxiety on memory has been identified [69,70].
Although only one study focused on each of the mentioned
variable) age and body side), they appear to be more important
subjects and further studies are needed.

According to information on the effect of gender differences
on memory [71-73], it is notable that only a study of how gender
differences can focus on the relationship between pain and
memory [45].

Interestingly, after gonadectomy, females having lower levels
of corticosterone (a stress related hormone), which affects
memory. After removing sex hormones, they were able to find
the target more easily [43]. In males, however, corticosterone
levels did not change significantly before and after
gonadectomy, nor did their ability to find a target [10,74].

This emphasizes the importance of stress on memory [75].
After gonadectomy (males and females), the delay in reaching to
the target did not different between the sexes. Pain induction
after gonadectomy, increased the delay in reaching to the goal
but does not affect the time spent in contact with the goal [48].
Significantly, pain reduces the time spent exploring the
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environment and other exploratory parameters. The animals,
also, recognized the targets despite persistent noxious
stimulation. However, in painful situations, males can maintain
their focus, while no strategy seems to be effective in female’s
sensory pain [46]. Despite neuro-protective nature of female
hormones, they appear to increase female’s response to
environmental stimuli and make pain difficult to control and
even, increase the risk of chronic pain [76,77].

In rats, a significant increase in the latency in making each
choice was observed during the post-delay test session, while in
humans the highest level of spatial ability was occurred in the
low estrogen- phase of the menstrual cycle [43]. It has also been
suggested that the underlying mechanisms of pain processing
differ as a function of gender and gonadal hormone status.

Noxious input as a result of brain injury or inflammation of
the nervous system, may causes structural and functional
changes which lead to the persistent pain [78]. The prefrontal
cortex, amygdale and CA1 of the hippocampus are areas that
have been found to be highly affected   by   pain   [37,41,79].
However these conclusion is controversial [80]. In another study,
grey matter (GM) atrophy was reported in patients after chronic
pain [15,81]. GM  damage  causes  severe  memory   impairment
[82,83]. Interestingly the duration and intensity of pain , and
even the interaction between both factors is effective in
destruction [84].

Comparison of groups of patients with chronic pain revealed a
decrease in the association of the medial prefrontal cortex with
the posterior constituents of the default mode network and an
increase in association with the insulating cortex in proportion
to pain intensity [85].

Impaired dopaminergic balance in the hippocampus through
the D2 receptor and prefrontal after pinning are suggested
reasons for loss of STM and WM [38,39]. Also a decrease in the
hippocampal BDNF, expression, and glutamatergic activity along
with an increase in GABA concentration reported on days 14 and
21 after CCI surgery [37]. Also, synaptophysin, that is a
presynaptic protein, and commonly used as a marker of
presynaptic terminals due to its high quantity and localisation to
synaptic vesicles decrease after induction of pain [61,79].

In BDNF knockout mice, synaptophysin level in the
hippocampal synapses decrease. There is also an association
between BDNF and synaptophysin expressions. The greatest
expression of these neuroplastic markers (BDNF/TrkB/
Synaptophysin) pathway associated with STM improvement [86].
Loss of synaptophysin leads to dysfunction of the glia gap
junction communication and memory impairment [87].

Decreasedprogranulin, a protein with neuroprotective and
immune-regulatory functions and a zinc transporter that has
been reported to work together after pain [45]. Another
suggested mechanism of NMDAR-dependent NO neuronal
plasticity occurs after induction of pain in the lateral, peripheral,
spinal and supra spinal nociceptive pathways [44].

Post-pain metabolic abnormalities have also been reported in
patients with NP and chronic pain [88] this may be due to alters
in human brain chemistry such as a decrase in N-acetyl aspartate

and glucose [88]. Despite structural changes in the brain
following chronic pain, it is hoped that these changes will
improve with pain relief [89,90].

Summary of conclusions
Although pain induction methods and the memory tests were

different in the literature, all of them (13 articles) concluded that
NP distrupts STM / WM. This change is likely due to structural
changes in different areas of the brain. Criteria, such as lesion
side, age and gender hormones, may affect pain sensitivity and
memory changes. While, they are important, but little attention
has been paid to them.

The body of evidence suggests that the causal relationship
between chronic pain in STM/WM impairment highlights the
need to consider this effect when dealing with patients suffering
from Pain. Appreciation this effect can improve personal
relationships by increasing empathy and economic efficiency
though with greater understanding by co-workers, colleagues
and employers. Just as importantly, it can help healthcare
professionals to anticipate and mitigate the cognitive
consequences for people with NP.

One of the limitations of the current study is that it is not
possible to discuss further the structure of the brain and its
relationship to pain and memory, and this interesting topic
requires further study. Another limitation is, the articles
included in this study, only one article worked on acute pain,
and the gap between articles that worked on the relationship
between acute pain and memory and the comparison of results
with NP and chronic pain is felt.
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