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In this editorial, aqueous solubility and specially water 
solubility under synchrotron radiations using Genetic Function 
Approximation (GFA) algorithm is one of the most important 
physiochemical and biological properties that plays a significant 
and important role in various chemical, physical, clinical, 
pharmaceutical, medical, medicinal and biological processes 
and has a marked impact on the design and pharmaceutical 
formulation development [1–20]. In addition, a successful strategy 
for the prediction of solubility is the construction of Quantitative 
Structure-Activity Relationship (QSAR) and Quantitative 
Structure-Property Relationship (QSPR) under synchrotron 
radiations using Genetic Function Approximation (GFA) algorithm 
[21,22]. Moreover, the main aim of Quantitative Structure-
Activity Relationship (QSAR) and Quantitative Structure-Property 
Relationship (QSPR) studies is to establish an empirical rule or 
function relating the structural descriptors of compounds under 
investigation to bioactivities [23–33]. A major step in constructing 
the Quantitative Structure-Activity Relationship (QSAR) and 
Quantitative Structure-Property Relationship (QSPR) models 
is finding one or more molecular descriptors that represent 
variation in the structural, topological, geometrical, quantum 
chemical and biospectroscopic properties of the molecules under 
synchrotron radiations using Genetic Function Approximation 
(GFA) algorithm, analytically and numerically. A wide variety 
of descriptors have been reported on Quantitative Structure-
Activity Relationship (QSAR) and Quantitative Structure-Property 
Relationship (QSPR) analysis under synchrotron radiations using 
Genetic Function Approximation (GFA) algorithm.

On the other hand, it can be concluded that quantum 
chemical calculations are thus an attractive source of new 

molecular descriptors, which can, in principle, express all of 
the electronic and geometric properties of molecules and 
their interactions under synchrotron radiations using Genetic 
Function Approximation (GFA) algorithm. Also, it should be 
noted that atomic charges, Highest Occupied Molecular Orbital 
(HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) 
energies, molecular polarizability, dipole moments and energies 
of molecule are examples of quantum chemical descriptors 
used in Quantitative Structure-Activity Relationship (QSAR) 
and Quantitative Structure-Property Relationship (QSPR) 
studies under synchrotron radiations using Genetic Function 
Approximation (GFA) algorithm. Furthermore, in the current 
editorial, the application of quantitative chemometrics methods, 
particularly Partial Least Squares (PLS), to quantum chemical 
descriptors was described.
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