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ABSTRACT

Silica gel supported iodine trichloride and indium triflate were found as efficient and reusable catalysts to the synthesis 
of a series of xanthenes as potentially interesting biological active molecules in high rates and yields. A broad range 
of xanthene derivatives were efficiently prepared via a three component reaction between cyclic β-diketones and 
arylaldehydes (2:1 ratio) with high yield and purity by the use of a catalytic amount of ICl3/SiO2 and In(CF3SO3)3 as 
Lewis acids under solvent-free and mild conditions. This newly achieved route has some advantage such as facile and 
simple handling, employing of neat and reusable catalysts, using readily available chemicals, short span of needed 
time, avoid of employing hazardous solvents, and including green chemistry aspects.
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INTRODUCTION

Nowadays, the role of solid acids in environmentally safe and economical technologies, mainly in chemical 
manufacturing processes and green chemistry is inevitable and undeniable [1-5]. Furthermore, the key role of solid 
acids as catalyst in the synthesis of heterocycles and other organic compounds is well-known and well-recognized 
[6-9], especially, after completion of reaction, they can easily separate from reaction mixture [10,11]. Furthermore, 
considering green chemistry aspects, due to reducing of environment pollutions, use of eco-friendly technologies 
such as running organic reactions under green conditions is one of the more important perspective that nowadays 
has received the interest of chemists [12-18]. The use of solvent-free conditions in chemical reactions is one of these 
technologies. To the point of green chemistry view, loading chemical reactions under solvent-less conditions has 
significant advantages such as avoiding use of harmful solvents, reducing environmental pollution, bringing down 
handling costs, predigestion of experimental and, work up procedures, and also frugality in labor [12-18].

Among organic compounds, phrmacological and therapeutic virtues of xanthene derivatives make them more notable 
and important molecules. Therefore, they have recently received more attentions by chemists and pharmacologists 
[19,20]. In addition, the importance of xanthenes clearly is understood by their applications including, xanthene 
dyes [21], anti-cancer activity [22], applicable for the evaluation of biomolecules via its fluorescent activity [23], 
and also in laser and optic technologies [24]. As well as, some of the xanthene-based heterocyles have recognized as 
antagonists and in photodynamic therapy [25]. As a matter of fact cancer is the leading cause of death in the developed 
countries, and second leading cause of death in the developing countries, therefore improving and developing of new 
and more effective compounds to treat of cancer is inevitable [16]. Considering above, for instance, some derivatives 
of 1,8-dioxoöctahydroxanthene were synthesized and assessed for their anticancer activities in vitro [16]. The obtained 
results from this experiment, reveals this type of compounds have shown anti-proliferative properties against a number 
of cancer cell lines including, human neuroblastoma (IMR32), human colon carcinoma (Colo-205), and human chronic 
myeloid leukemia (K562) cells [16]. Despite, taking attempts to 1,8-dioxoöctahydroxanthene derivatives synthesis and 
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evaluation of their properties toward tumor and normal cell lines [26], the leishmanicidal assay of these compounds 
were evaluated. The results of this experiment, revealed that some derivatives of 1,8-dioxoöctahydroxanthenes would 
show anti-leishmanial activity [27]. Also Up to date several natural products and herbal medicines are isolated and 
characterized from natural sources which have xanthene motifs in their chemical structures [28]. Nowadays, there 
are numerous reported methods in which lead to produce of xanthenes and their derivatives, including the reaction 
between aryloxymagnesium halides and triethylorthoformate [29], cyclodehydration [30], reaction of benzynes 
with phenols [31], intramolecular condensation reactions between benzaldehydes and acetophenones [32], and 
cyclocondensation of ortho-hydroxyarylaldehydes and β-tetralone [33]. Turning to the matter of xanthene derivatives, 
some other procedures are well-known that cause to produce of these heterocycles, such as catalytic condensation 
between 2-naphthol with aldehydes or acetals by the use of silica sulfuric acid (SSA), HCl/CH3COOH or H3PO4 [34]. 
Bacause of some of these methods are possessed unfavourable effects such as having long times and harsh condition 
of reaction, and also low yields, modifying and improving of them have been endlessly sought. Therefore, following 
to our interest in highly efficient catalytic synthesis of a broad class of heterocycles and organic compounds via 
multicomponent and one pot reactions [35-38], in this work, an efficient, green adapted and new route to the synthesis 
of 1,8-dioxoöctahydroxanthenes (4) was reported via condensation reaction between 1,3-cyclohexanediones (1) with 
arylaldehydes (2) by employing ICl3/SiO2 (iodine trichloride supported on silicagel) and In(CF3SO3)3 as powerful, 
cheap and recyclable catalysts (Scheme 1).

MATERIALS AND METHODS

Experimental

Materials and methods

An elecrtothermal KSB1N apparatus was applied to determine melting points (m.p.). JASCO FT-IR-680 plus 
spectrometer along with KBr as matrix was used to deduce IR spectra. FT-NMR Bruker Avance Ultra Shield 
Spectrometer at 400.13 and 100.62 MHz in CDCl3 as solvent was used to determine 1H NMR and 13C NMR spectra 
respectively. A Heraeus Rapid analyzer was got for the measurement of elemental analyses (C, H, N, S) and the results 
were in good agreement with the calculated values (± 0.3 %). TLC-Grade silica gel-G/UV 254 nm plates (eluents: 
n-hexane, and ethyl acetate 2:1) was applied to control of reaction progress. All chemicals were also purchased from 
Merck and Sigma-Aldrich chemical companies.

Preparation of ICl3/SiO2

Firstly, the 5 g of silica gel [60 Å, 35-75 μm particle size] for 4 h was heated in oven at 140°C. Then dried silica gel 
(1 g) was stirred with iodine trichloride (0.117 g, 0.5 mmol) in chloroform (10 mL), and then was heated under reflux 
conditions for appropriate time (4 h). In continuous, the mixture was filtered, washed thoroughly with chloroform (3 
× 10 ml), and the obtained catalyst was dried at 70°C for 2 h.

General Procedure for the Synthesis of 9-Aryl-Substituted 1,8-Dioxoöctaoctahydro-xanthenes

Cyclic 1,3-diketone (2 mmol), was added to the mixture of arylaldehyde (1 mmol) and ICl3/SiO2 (0.117 g, 0.05 mmol) 
or In(CF3SO3)3 (0.011 g, 0.02 mmol), and then the mixture was heated at 70°C for the time demonstrated in Table 1. 

 
Scheme 1: Synthesis of xanthene derivatives catalyzed by ICl3/SiO2 or In(CF3SO3)3.
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Compound  4 ICl3/SiO2 In(CF3SO3)3 M.P. (°C)/[lit.]Time (min)/Yield (%)a Time (min)/Yield (%)a

O

OO

Me
MeMe

Me 4a

60/90 60/95 202-204
(201-202) [45]

O

OO

Me
MeMe

Me

Cl

4b

70/90 70/92 230-232
(230-232) [45]

O

OO

Me
MeMe

Me

Me

4c

70/87 70/90 215-217
(216-217) [46]

O

OO

Me
MeMe

Me

NO2

4d

40/88 40/90 219-221
(221-223) [46]

O

OO

Me
MeMe

Me

Br

4e

80/89 70/88 226-227
(226-228) [47]

O

OO

Me
MeMe

Me

OMe
MeO OMe

4f

60/88 60/92 209-211
(210-212) [48]

O

OO

Me
MeMe

Me

F

4g

60/90 65/92 223-225
(224-226) [47]

O

OO

Me
MeMe

Me

OH

Br

4h

60/84 70/89 250-252
(249-252) [49]

Table 1: Catalytic synthesis of 9-aryl-substituted-1,8-dioxoöctahydroxanthenes by the use of ICl3/SiO2 and In(CF3SO3)3 under 
solvent-free conditions.
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O

OO

Me
MeMe

Me

CH3

CH3

4i

60/82 70/85 189-191
(190-191) [50]

O

OO

H3C CH3

Me
MeMe

Me 4j

70/88 70/90 238-239
(236-239) [30]

O

OO

Me
MeMe

Me

O

OO

Me
Me Me

Me

4k

60/86 60/89 245-247
(>300) [51]

OO

O

MeMe

Me
Me

O O

O
Me

Me

MeMe

4l

75/85 75/88 238-240
(236-238) [52]

O

OO

4m

60/92 70/95 271-273
(272-273) [53]

O

OO

Me

4n

65/88 65/90 260-262
(262-263) [45]

O

OO

NO2

4o

60/91 55/95 224-227
(224-226) [54]

O

OO
OH

Br

4p

70/88 70/89 250-252
(249-252) [29]
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O

OO

H3C CH3

4q

80/84 60/88 170-172
(169-171) [55]

O

OO

O

OO

4r

60/87 60/90 282-285
(280-282) [56]

O

OO
O

4s

90/81 80/85 141-143
(139-141) [13]

a Refers to isolated yield

The progress of the reaction was controlled by TLC (eluents: n-hexane, and ethyl acetate 2:1). After confirming of 
reaction completion, CHCl3 (10 mL) was poured to the reaction mixture, Afterwards, to separate catalyst, the mixture 
was filtered. In continuous, solvent was evaporated from the filtrate in vacuum to remain the crude product. Crude 
product was recrystallized by boiling EtOH to obtain the crystalline pure product. At the end, the separated catalyst 
from reaction mixture was washed with boilng ethanol, then dried at 120°C for 1 h (ICl3/SiO2: dried at 70°C for 8 h), 
and reused four more times in other reactions.

Typical procedure to the synthesis of product 4a

Compound 4a was synthesized based on the general procedure, by employing dimedone 1 (R1, R2=CH3) (0.280 g, 2 
mmol), benzaldehyde 2a (0.106 g, 1 mmol) and ICl3/SiO2 (0.117 g, 0.05 mmol) or In(CF3SO3)3 (0.011 g, 0.02 mmol). 
The progress of the reaction was controlled by TLC. When the reaction progress was completed, CHCl3 (10 ml) 
was poured to the mixture, and then the mixture was filtered to separate the catalyst. Removing solvent from filtrate 
by vaccum, lead to obtain crude product which was recrystallized by boiling EtOH to afford white crystals as pure 
product.

Representative spectral data

Compound 4a: mp 202-204°C; IR (KBr) νmax: 699, 742, 1200, 1468, 1624, 1662, 2958, 3059 cm-1; 1H NMR (400 MHz, 
CDCl3) δ (J, Hz): 0.79 (s, 6H, 2CH3), 0.90 (s, 6H, 2CH3), 2.00 (dd, 1J=16.4, 4J=28.8, 4H, 2CH2), 2.27 (s, 4H, 2CH2), 
4.55 (s, 1H, CH), 6.90-7.10 (m, 5H, CHAr) ppm; 13C NMR (100 MHz, CDCl3) δ 28.5, 30.4, 33.0, 33.4, 42.0, 51.9, 
116.8, 127.5, 129.2, 129.5, 145.2, 163.4, 196.7 ppm; Anal. Calcd.: C, 78.83; H, 7.48, (C23H26O3); Found: C, 78.79; 
H, 7.51.

Compound 4c: mp 260-262°C; IR (KBr) νmax: 827, 1125, 1175, 1466, 1615, 1658, 2955, 3049 cm-1; 1H NMR (400 
MHz, CDCl3); δ (J, Hz): 2.01 (m, 4H, 2CH2), 2.26 (s, 3H, CH3), 2.35 (m, 4H, 2CH2), 2.59 (m, 4H, 2CH2), 4.78 (s, 1H, 
CH), 7.03 (d, J=7.2, 2H, Ar-H), 7.19 (2H, d, J=7.2, CHAr); 

13C NMR (100 MHz, CDCl3); δ: 20.3, 21.1, 27.1, 31.2, 
37.0, 117.0, 128.2, 128.8, 135.8, 141.6, 163.8, 196.6 ppm; Anal. Calcd.: C, 79.09; H, 7.74, (C24H28O3); Found: C, 
79.12; H, 7.69.

Compound 4f: mp 209-211°C; IR (KBr) νmax: 844, 1089, 1189, 1375, 1479, 1620, 1659, 2995, 3049 cm-1; 1H NMR 
(400 MHz, CDCl3) δ (J, Hz): 1.04 (s, 6H, 2CH3), 1.12 (s, 6H, 2CH3), 2.24 (s, 4H, 2CH2), 2.47 (s, 4H, 2CH2), 3.78 (s, 
3H, OCH3), 3.81 (s, 6H, 2OCH3), 4.72 (s, 1H, CH), 6.52 (s, 2H, CHAr); 

13C NMR (100 MHz, CDCl3) δ: 27.2, 29.4, 
31.8, 32.2, 40.9, 50.7, 56.1, 60.7, 105.7, 115.6, 136.6, 139.7, 152.8, 162.3, 196.4; Anal. Calcd.: C, 70.89; H, 7.32, 
(C26H32O6); Found: C, 70.91; H, 7.28.

Compound 4g: mp 223-225°C; IR (KBr) νmax: 1179, 1160, 1199, 1359, 1500, 1619, 1659, 2970, 2989, 3039 cm-1; 

1H NMR (400 MHz, CDCl3) δ (J, Hz): 1.00 (s, 6H, 2CH3), 1.11 (s, 6H, 2CH3), 2.21 (q, J=16.4, 4H, 2CH2), 2.47 (s, 
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4H, 2CH2), 4.73 (s, 1H, CH), 6.91 (m, 2H, CHAr), 7.27 (m, 2H, CHAr); 
13C NMR (100 MHZ, CDCl3) δ 27.3, 29.3, 

32.2, 40.8, 50.7, 114.7, 114.9, 115.5, 129.9, 140.0, 160.1, 162.6, 196.3; Anal. Calcd.: C, 74.98; H, 6.84, (C23H25FO3); 
Found: C, 74.91; H, 6.79.

Compound 4i: mp 189-191°C; IR (KBr) νmax: 1139, 1159, 1199, 1375, 1449, 1615, 1659, 2879, 2959, 3065 cm-1; 1H 
NMR (400 MHZ, CDCl3) δ (J, Hz): 1.01 (s, 6H, 2CH3), 1.10 (s, 6H, 2CH3), 1.18 (d, J=5.2, 6H, 2CH3), 2.21 (m, 4H, 
2CH2), 2.46 (s, 4H, 2CH2), 2.79 (bb, 1H, CH), 4.73 (s, 1H, CH), 7.05 (d, J=6.8, 2H, CHAr), 7.19 (m, 2H, CHAr); 

13C 
NMR (100 MHZ, CDCl3) δ: 23.9, 27.5, 29.2, 31.3, 32.2, 33.6, 40.9, 50.8, 126.1, 128.1, 141.4, 146.5, 162.1, 196.5; 
Anal. Calcd.: C, 79.56; H, 8.22, (C26H32O3); Found: C, 79.61; H, 8.25.

Compound 4k: mp 245-247°C; IR (KBr) νmax: 809, 1004, 1161, 1199, 1364, 1424, 1461, 1619, 1665, 2956, 3039 cm-1; 

1H NMR (400 MHZ, CDCl3) δ (J, Hz): 0.97 (s, 12H, 4CH3), 1.07 (s, 12H, 4CH3), 2.18 (s, 8H, 4CH2), 2.44 (dd, 1J=36.4, 
4J=17.6, 8H, 4CH2), 4.71 (s, 2H, 2CH), 7.08 (s, 2H, CHAr), 7.27 (s, 2H, CHAr); 

13C NMR (100 MHZ, CDCl3) δ: 25.0, 
27.7, 29.0, 30.7, 32.2, 40.8, 50.6, 115.7, 127.9, 141.7, 162.4, 196.4; Anal. Calcd.: C, 77.14; H, 7.45, (C40H46O6); 
Found: C, 77.09; H, 7.48.

Compound 4l: mp 238-240°C; IR (KBr) νmax: 769, 1158, 1203, 1462, 1629, 1660, 2958, 3094 cm-1; 1H NMR (400 
MHZ, CDCl3) δ (J, Hz): 1.03 (s, 12H, 4CH3), 1.08 (s, 12H, 4CH3), 2.15 (dd, 2J=24, 4J=16, 8H, 4CH2), 2.48 (dd, 
2J=45.2, 4J=17.6, 8H, 4CH2), 4.72 (s, 2H, 2CH), 7.07-7.09 (m, 3H, CHAr), 7.15 (s, 1H, CHAr); 

13C NMR (100 MHZ, 
CDCl3) δ 28.0, 29.6, 31.8, 32.6, 41.3, 51.3, 116.0, 126.8, 128.2, 144.0, 162.7, 196.7; Anal. Calcd.: C, 77.14; H, 7.45, 
(C40H46O6); Found: C, 77.21; H, 7.39.

Compound 4n: mp 260-262°C; IR (KBr) νmax: 827, 1125, 1176, 1468, 1617, 1657, 2956, 3052 cm-1; 1H NMR (400 
MHZ, CDCl3) δ (J, Hz): 2.01 (m, 4H, 2CH2), 2.26 (s, 3H, CH3), 2.35 (m, 4H, 2CH2) 2.59 (m, 4H, 2CH2) 4.78 (s, 1H, 
CH), 7.03 (d, J=7.2, 2H, CHAr), 7.19 (d, J = 7.2, 2H, CHAr); 

13C NMR (100 MHZ, CDCl3) δ: 20.3, 21.1, 27.1, 31.2, 
37.0, 117.0, 128.2, 128.8, 135.8, 141.6, 163.8, 196.6; Anal. Calcd.: C, 77.90; H, 6.54, (C20H20O3); Found: C, 77.88; 
H, 6.59.

Compound 4o: mp 224-227°C; IR (KBr) νmax: 831, 1170, 1465, 1665, 2952, 3071 cm-1; 1H NMR (400 MHZ, CDCl3) 
δ (J, Hz): 2.07 (m, 4H, 2CH2), 2.35 (m, 4H, 2CH2) 2.61 (m, 4H, 2CH2), 4.88 (s, 1H, CH), 7.48 (d, J = 8.8, 2H, CHAr), 
8.10 (d, J = 8.8, 2H, CHAr); 

13C NMR (100 MHz, CDCl3) δ: 20.2, 27.1, 32.2, 36.8, 115.7, 123.4, 129.4, 145.5, 151.7, 
164.6, 196.4; Anal. Calcd.: C, 67.25; H, 5.05; N, 4.13, (C19H17NO5); Found: C, 67.21; H, 5.11; N, 4.09.

Compound 4p: mp 250-252°C; IR (KBr) νmax: 649, 813, 1004, 1034, 1085, 1179, 1214, 1288, 1368, 1462, 1564, 1620, 
2959, 3096 cm-1; 1H NMR (400 MHz, CDCl3) δ (J, Hz): 1.86 (s, 2H, CH2), 2.05 (t, J=12.4, 2H, CH2), 2.15 (d, J=8.4, 
1H, CH), 2.43 (m, 2H, CH2), 2.57 (t, J=9.2, 2H, CH2), 2.75 (d, J=8.8, 1H, CH), 4.58 (s, 1H, CH), 6.91 (d, J = 4.4, 1H, 
CHAr), 7.13 (s, 1H, CHAr), 7.26 (d, J=4.4, 1H, CHAr) 10.77 (s, 1H, OH); 13C NMR (100 MHZ, CDCl3) δ: 19.5, 19.9, 
27.9, 28.0, 29.7, 35.9, 36.9, 112.0, 117.0, 117.3, 119.4, 126.9, 130.5, 130.7, 150.0, 170.7, 173.4, 197.1, 201.3; Anal. 
Calcd.: C, 58.63; H, 4.40, (C19H17BrO4); Found: C, 58.59; H, 4.36.

Compound 4q: mp 170-172°C; IR (KBr) νmax: 827, 1129, 1199, 1449, 1619, 1659, 3049 cm-1; 1H NMR (400 MHz, 
CDCl3) δ (J, Hz): 1.19 (d, J=6.8, 6H, 2CH3), 2.01 (m, 4H, 2CH2), 2.34 (m, 4H, 2CH2), 2.61 (m, 4H, 2CH2), 2.81 (t, 
J=7.2, 1H, CH), 4.80 (s, 1H, CH) 7.06 (d, J=8, 2H, CHAr), 7.19 (2H, d, J=8, H Ar); 13C NMR (100 MHZ, CDCl3) 
δ 20.3, 23.9, 27.1, 31.0, 33.6, 37.0, 117.0, 126.2, 146.5, 163.9, 196.6; Anal. Calcd.: C, 78.54; H, 7.19, (C22H24O3); 
Found: C, 78.55; H, 7.22.

Compound 4r: 252-255°C; IR (KBr) νmax: 802, 1001, 1165, 1210, 1425, 1460, 1623, 1665, 2950, 3038 cm-1; 1H NMR 
(400 MHz, CDCl3) δ (J, Hz): 2.29 (m, 8H, 4CH2), 2.39 (m, 8H, 4CH2), 2.57 (m, 4H, 2CH2), 2.67 (m, 4H, 2CH2), 4.74 
(s, 2H, 2CH), 7.18 (d, 4H, J=7.6, CHAr) ppm; 13C NMR (100 MHZ, CDCl3) δ: 20.1, 27.1, 30.8, 36.9, 116.9, 128.0, 
141.9, 164.0, 196.7 ppm; Anal. Calcd.: C, 75.28; H, 5.92, (C32H30O6); Found: C, 75.31; H, 5.89.

RESULTS AND DISCUSSION

In the first view, however, there are some reports from condensation reaction between cyclic 1,3-diketones 1 and 
arylaldehydes 2, that lead to synthesize 2,2'-(arylmethylene)bis(3-hydroxycyclohex-2-enone) (3) [26,39-41], but 
under given conditions, 2,2'-(arylmethylene)bis(3-hydroxycyclohex-2-enone) 3 wasn’t obtained and reaction of cyclic 
1,3-diketones 1 with arylaldehydes 2 leads to efficient synthesize of 9-aryl-substituted 1,8-dioxoöctahydroxanthenes 4.

In the other investigation, using aryl-dialdehyde substrates, instead of monoaldehydes lead to condensation reaction 
with 1,3-cyclic diketones with 1:4 ratioes respectively to afford bisxanthenes as target products. In this five component 
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reaction, 1,3-diketones (4 mmol) were reacted with dialdehyde (1 mmol) to afford bis(9-aryl-substituted-1,8-
dioxoöctahydroxanthenes) (Scheme 2).

The chemical structure of the product 4 was characterized from their IR, 1H, and 13CNMR spectroscopic data. Also the 
melting points of products were compared and confirmed with reported ones in the literatures.

We are directed to immobilize iodine trichloride onto the common solid support in order to combine the properties 
such as catalyst selectivity, high activity with the ease of separation and catalyst reuse. It may be considered notable 
that the support materials play a significant role on catalyst activity when they are supported catalysts on their surface. 
For instance, silica gel was chosen as solid support due to its high surface area, excellent stability (chemical and 
thermal), good accessibility, recyclability, and ease of functionalization of the surface groups [42,43]. Iodine trichloride 
supported on silica gel (ICl3/SiO2) does not need activation and is recycled many times under the same conditions with 
fresh reactants to yield similar results without significant loss of activity [44]. In following of our study, In(CF3SO3)3 is 
handled as another effective and recoverable catalyst and is compared with ICl3/SiO2 in xanthene derivatives synthesis. 
However, a small part of this study, as an incomplete and partial results have been previously reported in a symposium 
[45], herein we wish to report developed and completed 1,8-dioxoöctahydroxanthenes synthesis protocol with highest 
yields in short reaction times under obtained best conditions.

To find the best conditions for catalytic (ICl3/SiO2 or In(CF3SO3)3) synthesis of xanthene derivatives, at first, synthesis 
of compound 4a was opted as a model.

By investigations on model reaction, the reaction carried out using ICl3/SiO2 or In(CF3SO3)3 as catalyst in different 
solvents including H2O, EtOH, CH3OH, CH3Cl, CH3CN, and solvent-free conditions. These experiments showed that 
the reaction is performed with shortest time and highest yield under solvent-free conditions (Table 2). Therefore, 
the reaction carries out under solvent-free conditions. On the other hand, to the best of our knowledge solvent-free 
condition has some advantage for chemical reactions such as reduce pollution, avoiding the use of harmful and toxic 
solvents, decreasing costs of solvent handling, easy and facile work up technique, and leading to save in labour [46].

The affords to evaluation of required catalysts in the synthesis 1,8-dioxoöctahydroxanthene derivatives for the model 
reaction, was revealed thet when the reaction was loaded with 5 mol% of ICl3/SiO2 and 2 mol% of In(CF3SO3)3, the 
maximum yield of product is obtained (Table 3).

As the data of Table 3 are shown, the best quantities of required catalysts for this reaction were found to be 5 mol% 
for ICl3/SiO2 and 2 mol% for In(CF3SO3)3, whereas the use of larger amounts of the catalysts do not improve the yield.

In addition, the effect of temperature on reaction was studied. Examining of reactions progress at various temperatures 
in the presence of optimized amount of catalysts for model reaction, revealed that the maximum rate of reaction is 
achieved at 75°C when ICl3/SiO2 is used as catalyst, and at 100°C when In(CF3SO3)3 is used as catalyst (Table 4).

By a looking at Table 4, it is found that the reaction is completed slowly at room temperature. When ICl3/SiO2 is 
used as catalyst, by increasing temperature to 75°C [when In(CF3SO3)3 is used, it is 100°C], the yield of reaction is 
increased along with decreasing of the time of reaction. When, the reaction is heated above 75°C [above 100°C in the 
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   Scheme 2: Synthesis of bis(9-aryl-substituted-1,8-dioxoöctahydroxanthenes by 

the use of catalytic amounts of ICl3/SiO2 and In(CF3SO3)3.
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Table 2: Evaluation of solvent effect for model reaction.

Entry Solvent A B
Time (min)/Yield (%) Time (min)/Yield (%)

1 H2O 130/trace 180/46
2 EtOH 130/60 130/50
3 MeOH 190/52 190/56
4 CHCl3 190/46 190/41
5 CH3CN 190/33 190/27
6 DMF 190/35 190/30
7 Dioxane 65/76 65/81
8 Solvent-less 60/90 60/95
   A) Reaction catalyzed by ICl3/SiO2 
   B) Reaction catalyzed by In(CF3SO3)

Table 3: Optimization of required catalysts for model reaction.

ICl3/SiO2 (mol%) Time (min) Yielda (%) In(CF3SO3)3  (mol%) Time (min) Yielda (%)
1 130 36 1 130 62
2 130 57 2 60 95
5 60 90 3 60 90
8 60 87 5 60 80
10 70 81 8 60 75

aIsolated yield

Table 4: Evaluation of temperature effects on model reaction.

Temp. (°C)a Time (min)a Yield (%)a Temp. (°C)b Time (min)b Yield (%)b

r.t. 120 25 r.t. 300 30
40 120 50 40 120 45
50 90 62 50 100 50
60 70 68 60 90 70
70 60 79 70 80 77
75 60 90 75 60 80
80 60 88 80 60 84
90 60 84 90 60 91
100 60 80 100 60 95
110 60 80 110 60 89
  aICl3/SiO2 as catalyst 
  bIn(CF3SO3) as catalyst

presence of In(CF3SO3)3], so more high temperatures do not further improve the yield and the time of reaction. Based 
on obtained optimal conditions, we run the xanthenes derivatives synthesis in the presence of ICl3/SiO2 (5 mol%, at 
75°C) or In(CF3SO3) (2 mol%, at 100°C) in solvent-free conditions.

Considering optimal conditions, numerous arylaldehydes 2 bearing both electron-donating and electron-withdrawing 
groups were effectively condensed to give 9-aryl substituted 1,8-dioxoöctahydroxanthene derivatives 4. In all cases, 
corresponding xanthenes were isolated with good to excellent yields (Table 1) [13,29,30,47-58].

At the end of each run, the separated catalysts by filtration, washed with diethyl ether, In(CF3SO3)3 dried at 120°C for 
1 h; and ICl3/SiO2 dried at 70°C for 8 h. The catalysts after drying reused in another reaction. It was found that both 
ICl3/SiO2 and In(CF3SO3)3 represent high catalytic activity wich lead to obtain products with good to excellent yields 
in short reaction times. Furthermore, the catalysts, can be recycled and reused four more times without considerable 
loss of their activity (Figure 1). All results of this evaluation for model reaction, are summarized in Table 5.

Results comparison for the synthesis of 4a (model reaction) between current protocol and others previously reported, 
could be found in Table 6 [12-18,47,50,52,59-62]. As can be seen from Table 6, it was understood that, above used 
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Figure 1: Recyclability results of ICl3/SiO2 and In(CF3SO3)3 as catalysts in the synthetic 
procedure for model reaction.

Product Total reusability ICl3/SiO2 In(CF3SO3)3

Yield (%)a/Time (min) Yield (%)a/Time (min)

O

OO

Me
MeMe

Me

1 90/60 95/60
2 90/60 95/60
3 88/60 94/60
4 87/60 93/60
5 85/65 91/65

aIsolated yield

Table 5: Evaluation of catalysts recyclability to the synthesis of 4a.

catalysts provided an excellent conditions to xanthenes synthesis than other that have been reported before. This 
protocol not only leads to obtain the xanthens with high yields but also eludes the issues dependent with environmental 
pollution, catalysts prices, and handling. Considering Table 6, in the most cases, the yield of obtained product in our 
work is higher than others. However, in certain instances, it can be seen that the reported yields are higher than our 
procedure, but those tolerate some disadvantages than our procedure such as longer reaction times [13,47-49], need 
to higher temperature [13,47,50,62], necessity of organic solvent [14,16,60], high-cost of catalyst or high amount of 
required catalyst [13,15,16,18,47,50,60-62], and less or non-reusability of catalyst [14-16].
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CONCLUSION

To conclude, a new protpol, green, and highly efficient method using ICl3 supported on silica and In(III) triflate as 
highly efficient and recyclable catalysts to 9-arylsubstituted-1,8-dioxoöctahydroxanthene synthesis was introduced. 
It is notable that, all obtained products by the use of catalytic amount of ICl3/SiO2 or In(CF3SO3)3 were achieved in 
excellent yields. The progress of reaction is strongly dependent in Lewis acidic virtues of ICl3/SiO2 and In(CF3SO3)3 
as a key factor which efficiently catalysed reaction between cyclic 1,3-diketones and arylaldehydes. Using this highly 
efficient route without using any solvent not only provide an inexpensive and simple method but also lead to expanding 
the green chemistry aspects. The facile experimental procedure, short span of reaction times, use of neat procedure, 
recyclable catalysts, and readily available substrate are other advantages of this protocol.
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