
2020
Vol. 8 No. 5: 64

iMedPub Journals
http://www.imedpub.com

Research Article

1© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://colorectal-cancer.imedpub.com/archive.php

American Journal of Computer
Science and Information Technology

A New Approach to Prevent the DDOS Attack
and XML Injection Attacks Using XSD Trace

Handler in Web Service

Abstract
Web management today plays a major role in developing Business-To-Business
(B2B) and business-to-customer (B2C) applications. Web services protection is
facing a major threat due to Distributed Denial of Service (DDoS), XML Injection
and Cross Site Scripting (XSS) attacks by injecting. Protection of Web sites Security
is also at risk. It is therefore monumental that the sensitive Web Service is provided
with substantial safety. Security components such as XML encryption, advanced
marks and customer tokens are a key part of communication in the business
process in web administrations. The attacker can use the situation and make
administrative changes to hack the information secured via web management. The
main objective is to provide a Safety System in Service- orientated Architecture
for the prevention of XML attacks and DDoS. The research aims to develop a
framework to detect and prevent attack on web service-based applications by
XML-based distributed denial of service, DDoS, etc. A monitory of the source
parameter that is performed is applied to prevent DDoS attacks by the historical
traffic attack detection mechanism. The algorithm detects the user request
number in a specific day and time. It also calculates the number of bytes saved by
preventing a DDoS attack. If the number of requests from a single client is greater
than the threshold value, the client IP is blocked and the incoming request IP from
the client to the server is retained. It also serves to generate a Captcha to check
whether the application is from a BOT, illegal user or a legally binding user. The
user's IP address is blocked when an illegitimate user is identified. The application
is then sent to the XML injection filter. In order to filter the incoming request, static
and dynamic filtrations are used.

Keywords: Web service; XML injection; DDoS attack; Service-based design

Received: November 5, 2020; Accepted: November 19, 2020; Published: November
26, 2020

Hasan Hashim* and
Alzighaibi AR

Department of Computer Science and
Engineering, Taibah University, Yanbu, KSA

Corresponding author:
Hasan Hashim, Department of Computer
Science and Engineering, Taibah University,
Yanbu, KSA

 satlam@taibahu.edu.sa

Citation: Hashim H, Alzighaibi AR (2020) A
New Approach to Prevent the DDOS Attack
and XML Injection Attacks Using XSD Trace
Handler in Web Service. Am J ComptSci
Inform Technol Vol.8 No.5: 64.

Introduction
The security of web application is an information security
branch devoted to website, web applications and web services
specifically. At a high level, web security applies but specifically
applies to internet and web systems, based on principles of
application security.

Materials and Methods
Web service
Web Server is ideally built in Standard General Mark-Up Language
(SGML) XML, so attacks such as XML 2, XSS, and Xpath injections

are highly prevalent and even Web Services are provided over
http using a Single Object Access Protocol (SOAP) [1]. The
attacks above insert more nodes or alter the current nodes to
adjust operating parameters. For Web Service protection and
business model to function properly, mitigation of these attacks
is important. Confidentiality, availability and integrity are the
fundamental requirements of a secured system. The assault may
take place in a way that deviates from the above activities and is
said to be vulnerable to the attack. Such attacks may be performed
by UN sanitized web service input or unauthorized source code
updating through malicious code injecting into web services. The
main threat of a web service is, among other things, inserting
malicious XML code into the web service through UN sanitized

2020

This article is available in: http://colorectal-cancer.imedpub.com/archive.php2

American Journal of Computer
Science and Information Technology Vol. 8 No. 5: 64

data. In the following sections, the detection and corrective
actions of different kinds of attack, including the attacks referred
to above, will be listed [2].

Security issues in web services
The advances of web Services technology impact the world's web
and business community extensively and considerably. Open Web
Platform standards such as XML, Single Object Access Protocol
(SOAP) allow user data and application to interact directly and
with complex connections without human interference. In
different types of architecture, the web service technology is
applied and cooperates with accessible software and the design
process. They can therefore be accepted in progress without
major modifications in both databases and legacy applications.

Distributed denial of service (DDoS) attack
An attempt to deny service (DOS) if the attacker tries to reduce
the service's availability thus preventing the authorized user from
using the operating system. In a web service, 16 forms are based
on external attacks by entities and recursive attacks by entities
[3]. In a DDoS attack, numerous requests for service access
from different network flood points with competitor hit [4]. We
must know the difference between bad and legitimate requests
quickly to recognize the attacks from DDoS. In an earlier step of
the network and at different points in the network, this can be
identified [5]. A security system should be used to filter traffic
from each access point to the networks. This strategy can be seen
in Figure 1 [6].

Filtering of a trafficking generated multiple points of access in the
earlier phase can avoid the DDoS attack [7]. Six multiple requests
for a service may be provided for specific attacker flood requests,
the service can also be accessed in a different network direction,
which means that all firewalls must be supplied to the access
point within the network, in order to handle the service request.
It helps the server to process the legitimate application without
DDoS attacks.

The main goal of this research consists of proposing and

implementing a new XSD trace processor and secure web
service message communication pattern, including the use of
static and dynamic filters. This work provides a new approach
for transmitting protected messages with improved encryption
methods. This newly proposed system offers solutions for many
problems, such as malicious code prevention and identification
of sensitive web-based content. The framework suggested
incorporates attacks based on injection, and secures web-based
messages. It ensures the data shared are authenticated, detailed
and confidential. The main contribution of this work is the sharing
of knowledge between business processes to avoid and protect
them. End-to-end protection must be given to optimize the scope
of web services. When intermediaries don't trust communication
endpoints. Although the security requirements for web services
are complex, the needs of SOAP-oriented messaging are not
protected by new security frameworks.

Related work
The advancement of Internet services has speeded up the
integration of various business processes across a number of
platforms spread across the globe alongside the advantages
provided by internet services for online transactions, which
together pose some security threats. It offers a comprehensive
safety study for web services and service-based design (SOA) [8].
In addition, all the latest research areas in the fields of access
management for easy, conversation-based Internet service and
web-based workflow access management briefly address the
safety requirements of internet services. A robust WS Security
system uses stream based approaches to boost web service
delivery performance and enhance the various types of denial of
service attacks [9]. The system is a comprehensive WS security
system. A new approach for the study of business processes and
risk services. We focused mainly on vulnerability identification
through previous research into vulnerability and added more to
information sources vulnerability compilation [10]. Classified XSS
(Cross Site Scripting) exploits reflected or Stored Object Mode
(SOM) and categorized XSS defenses into different types of testing,
defense coding [11], vulnerability detection and weakness and
strengths. In addition, online methods for implementing such XSS
protections have been studied. In order to counteract signature
wrapping attack, the use of context sensitive XML signature was
proposed [12]. Signed nodes are sometimes removed from the
SOAP message and inserted into a new SOAP message to lose
their original setting. Introduced the sigfree tool, an online tool
to avoid injection of code and buffer overflow attacks for a range
of web and web services [13]. Sigfree uses a new method called
data-flow code abstraction. Double Guard, intrusion detection
systems that mimic the network's use of the front-end server and
back-end application for user behavior, are both proposed and
used to combat new and unknown buffer overflow attacks. The
user interface as well as the database request was also evaluated
by the web client. It also allows us to identify attacks which
could not be found by independent IDS [14,15]. A study of XML
rewrite attack detection technology on web services explains
web services, SOAP messages, headers and XML rewrite attacks

Figure 1: DDoS attack.

2020

© Under License of Creative Commons Attribution 3.0 License 3

American Journal of Computer
Science and Information Technology Vol. 8 No. 5: 64

in great detail. Studied the advantages and disadvantage of
various mechanisms such a policy-based approach for detection/
mitigation of attacks [16,17].

Proposed work
This proposed Web Service Security (WSS) architecture is
complemented with three main components, DDOS attack
detection, dynamic injection filter service, and fixed XML- based
filtering service. To detect and prevent the attack of the intruder,
the filtering policies are implemented. Customer requests are
passed through DDOS detection filter services. Upon validating a
DDOS attack, it searches XML for a fixed template injection attack.
The filter checks the wrong type of script and validates the sort,
length, format and range of inputs in the received text (Figure 2).

The server-side code is designed to restrict income from other
sources such as query strings or XML injection cookies, SQL
injection, X path Injection and cookie replay detections. This
is supported by client-side controls or inputs. If no injection is
undetected, the application is validated via dynamic patterns
based on application severity. Using a single attack detection
system is not simple to identify legitimate requests or illegitimate
requests. For this reason, a large group of attack detection systems
have to be installed by service providers because the attacks can
be of any form. Therefore, before accessing the service provider
in business, the filtration and detection mechanism is installed.

Web client
The client must be from different machines. It is the user interface
where the user inputs the data in the user interface screen. The
request is then validated in the next level DDoS attack detection.

DDoS attack detection
In case of an order with the historic traffic aggregation DDoS
detection algorithm, which calculates the threshold value for
the historical value, the demand is passed to the DDoS detection
element. The request is analyzed. The request is passed with the
captcha generation algorithm for detection of DDoS based on the
threshold value.

XML injection filter
The code was evaluated here using the static pattern in the XML
injection static filter. If no injection is found, Dynamic Filter has
assessed the request based on the severity by the programmer
of the application design.

Web service DB
The data shall be compiled and sent to the Service user once a
valid request has been processed and the request enters the web
service (Database) DB.

DDoS attack detection
The following explains the algorithm and procedure for DDOS
detection and prevention mechanism.

Procedure for historic traffic surge aggregation DDoS
detection
This section uses an algorithm for the avoidance of DDoS, the
historical analysis of DDoS surges. This algorithm draws input
from the application's hosting application's historical data and
logs.

Three main inputs are proposed to be used.
• Total number of Hourly requests (HR0, HR2…. HR23)

• Time of the requests coming into the server

• IP address of the origin of the request

This algorithm is divided into three major sections.

a. Threshold request count computation (TRcnt)

b. Threshold time computation (THt)

c. Threshold bytes computation provided for each user (TBt)

Threshold request count computation
The first step is to set the total time under consideration on the
basis of the historical data available and other realistic constraints,
usually for a few weeks to a month. The total number of requests
from the start of the period to the end of the period considered
shall be determined after the time limit of the data is set. The
next step is to calculate the average daily demand according to
the following formula.

 Rcntave= Total user requests in all days under
consideration/Total days considered

Based on the per day average figure calculated above, the requisite
threshold value is calculated using the following formulae

 TRcnt per sec=Rcntave/86400

Threshold bytes provided for each user
For the next phase, in the normal few weeks to a month, the total
time under consideration should be set. The total number of

Figure 2: XSD handle architecture of XSD handle.

2020

This article is available in: http://colorectal-cancer.imedpub.com/archive.php4

American Journal of Computer
Science and Information Technology Vol. 8 No. 5: 64

bytes accessed between the beginning of the period and the end
of the time period under consideration shall be established after
the date of data is fixed. The next step is to calculate the user-
accessed average volume of data (in bytes) during the reporting
time. The IP address is used as unique identifier for the purpose
of determining the data accessed by the user. The average data
per program is determined using the following formats:

 TBt=Total bytes accessed by the users/Total number of users

If IP address/user has exceeded the quantum threshold bytes, the
use of any system resource is not permitted and the request is
considered to be DDoS. The following method, which defines the
validity of the user/demand by assigning the above parameters as
baseline. First of all, the characteristics of the current request are
extracted EX: IP, request form and request time stamp. Then you
can download the historical data of the same user/application.

Now update the request threshold number for that specific user/
demand (IP adresse) in the table with the time differential count.
Using the following formulae, measure the time between the last
successful applications for the current application.

 Tdiff=tcurr –tpre

If Tdiff is greater that the THt and the Threshold count of that
particular user (IP address) don’t exceed the TRcnt per second
then the user is considered as a legitimate user and the request is
not flagged as DDoS attack.

 Step 1: If tdiff >THt

 Step 2: if TRdiff < req/sec from IP address request from user is
legitimate

 Step 3: Then DDoS attack detected

The next step of the algorithm is to enter comprehensive logs
about the DDoS attack observed, including IP address, time of
attack etc. This is an input to the following stage in which a novel
' Prolific Captcha Reconstruction Algorithm' is used to deter the
ongoing DDoS attack.

 Step 1: If ip address in attack table Aipcnt= Aipcnt+1

 Step 2: Then, attach severity count Sivi=Aipcnt

First step is to measure the severity of the attack by
determining the attack count of the IP address in consideration,
within a period of time (say 60 seconds). Increment the attack
count by one (for the current attack) and determine the updated
severity of attack. Based on the severity of the attack, a profilic
captcha is generated by the following algorithm.

Captcha generation algorithm
This algorithm is used to generate a captcha page where a text
will be displayed randomly within the position of the box in the
screen.

Step 1: Initialize bitmap object “bmap” with basic parameters like
width, height and pixel format.

Step 2: Initialize graphics-> assigned to bitmap with smoothing

mode property.

Step 3: Initialize rect object for setting boundary, hatch=brush
initialization to style the content with fore and background
color.

Step 4: Fill graphic object with brush and rectangle

Step 5: Intelligent captcha text size definer

Step 6: Validate the condition of font size>rectangle width

Step 7: If Yes

Step 8: Initialize font width size, family and type

Step 9: Font size Val=Customize based on the random text
generated by generate random code member of random image
custom class

Step 10: Initialize string formatter with alignment details

Step 11: Initialize graphics path to write out the captcha
string by finalizing the “x” and “y” location co-ordinates by
manipulating the rectangle zone initialized in step 3

Step 12: Graphics path warped the graphics object with the co-
ordinate point and rectangle object initialized in

Step 13: Initialize the hatch brush style, fore and back color

Step 14: Fill path method applied on graphics object using the
hatch brush & graphics path

Step 15: Make the visualization harden by filling with the ellipse
method for the graphics object. The strength is based on the pre-
requisite value Slvl obtained

Step 16: Final captcha image is extracted

Static filter based attack detection
Without the required level of security clearance, compromise
database protection, harm or delete da-deletion in any web
service, which has the effect of taking one or more parameters as
input and returning one or more values as result after performing
percussive data/database operations, etc.

Web services are therefore maintained by static pattern matching
technology as shown in Table 1 to protect most of the current
filtering mechanisms (Table 1).

Rule number Description
Rule 1 Field-> Type checks-> Dynamic XSD decision ->

Valid -> Grant
Rule 2 Field-> length checks-> Length lesser than

expected-> Dynamic XSD decision-> Invalid->
Deny

Rule 3 Field-> length checks -> Length greater than
expected -> Dynamic XSD decision -> Invalid ->

Deny
Rule 4 Field> length Checks -> meets length criteria ->

Dynamic XSD decision -> Valid -> Grant

Table 1: Rule Set of Static Filter.

The filters are planned, designed and implemented at the time

2020

© Under License of Creative Commons Attribution 3.0 License 5

American Journal of Computer
Science and Information Technology Vol. 8 No. 5: 64

of original design with static pattern matching filters. This form
of pattern match is rigid in nature and can't be changed any later
because the structure of the program is hardly coded as shown
in Figure 3. In comparison, static pattern matching strategies,
potential attack models cannot be accurately predicted and if the
filters are to be updated, they are resource- intensive and time-
consuming. The following code demonstrates the static filter XSD
pattern (Figure 3).

Dynamic filter based attack detection
The above narrated drawbacks in the legacy system can be
mitigated by this proposed dynamic pattern matching technique
wherein the validation logic and then filter component can be
separated into two different entities (Figure 4).

When designing and coding a web service, regardless of its
application type or platform, some kind of placeholder together
with a level indicator can be used for multiphase validation by
the validation mechanism if appropriate. This is an integral part
of the web service and does not have to be modified during the
lifecycle of the application. The validation placeholder that is
part of the original web service code. A unique ID can be used
for the field required to be validated and generally made globally
unique to the server and/domain, is contained in each validation
placeholder. The testing logic and processes usually have to take
place on a separate server or VM and can be a different platform.
This method of defining must be done. Such validation logic
separation is also useful in situations where the entire validation

process of many different web sites/servers can be linked to a
single validation server that can be designed to carry out complex
mathematical calculations and functions that are too expensive
to duplicate to all web servers or services.

Since most Web services return some value directly from a
database or by calculating values based on data bases tables,
and when the validation is performed on a separate validation
VM, the request can be quarantined in case of a suspected attack
pattern, simulation of execution can be carried out with the
validation VM without affecting the actual web service.

The admin or security expert the dynamic-frame the required
levels and type of validation, determine the complexity of the
validation, and allocate the validation unique ID against the
validation as shown in figure in the proposed two entity dynamic
validation techniques. More than one validation entity can be
selected against one validation ID and based on the requesting
entity/user ID profile, geo-location, etc. the program can handle
this automatically without any manual intervention in real-time
(Figure 5).

During dynamic validation, the system tends to be trained to
detect attacks over time and this type of knowledge can be
generalized and the learned dataset can directly be incorporated
into other future design validation machines, i.e. when the
system has been adequately trained with a complex set of values
and even in real time, the time required for the system for the
detection of attacks can be minimized. It makes the system stable
and reliable over a period of time against attacks. Such an attack
detection/validation without disrupting existing web services
and code may in future even include some kind of deep learning
mechanism due to this separation of the code with the validation
mechanism as two separate entities.

 n(D)=> Today number of records available in the dimension D

 Fk=> Fraction of records meant to be deviated

 Cumulative fraction of records=N.Fk

Standard deviation ∑ (Fraction record-Inverse of
factional record)2/n(D)-1 Sparse Outlier Boundary
Detection=Fk1+Fk2+Fk3+…..Fkn/Standard Deviation

Figure 3: Static pattern validation.

Figure 4: Dynamic validation handling-software architecture.

Figure 5: Dynamic validation handling-implementation scenario.

2020

This article is available in: http://colorectal-cancer.imedpub.com/archive.php6

American Journal of Computer
Science and Information Technology Vol. 8 No. 5: 64

The sparse outlier limit is calculated using the above formulae.
For all entry value fields, it is calculated and if the value is within
the computed boundary, the input field value is then considered
safe to operate and passed for further processing to the web
service (Figure 6).

In the event that the calculated sparse outlier boundary value for
the field does not fall within the value, it is regarded as an attack
and the IP address is blocked and further action against the user
(IP) is taken, as shown in figure under the established protocol for
dynamic validation technique.

Algorithm for the dynamic filter
Input:

User request

Output:

1. IP Address of the attacker.

2. Valid response for the valid user.

Procedure:

Step 1: User input requests received.

Step 2: Validation with fixed XSD generated schema.

Step 3: Check for attack identified-calculate the sparse outlier
boundary value.

Step 4: If SOBV less than 1 validation with dynamic XSD generated
schema.

Step 5: Check for attack identified with additional filtered result
set calculate the sparse outlier boundary value.

Step 6: If SOBV exceeds the value 1 block the request. Register
the IP address for future reference.

Step 7: Else respond the user with valid input.

Step 8: Repeat the process till the entire user request is processed.

Implementation of dynamic and static filter
Tables 2 and 3 represent set of rules to allow data both integer
and string data type with the following restriction (Tables 2 and
3).

Fixed grid XSD Dynamic grid XSD
S. No. Integer Additional info

1 Type will be
checked

Type will be
checked

2 Length will be
checked

Length will be
checked

3 Space permitted
or not

Space permitted
or not

If space not
permitted, input

string will be space
nullified

4 Negative character
checks

5 Float value checks
6 Max permitted

and min permitted
values

Table 2: Comparison of static validation Vs dynamic validation (Integer
data type).

Fixed grid XSD Dynamic grid XSD
S. No. String Additional info

1 Type will be
checked

Type will be
checked

2 Length will be
checked

Length will be
checked

3 Space permitted
or not

Space permitted
or Not

If space not
permitted, Input

String will be space
nullified

4 Special character
existence will be

checked
5 First character of

the column can
be caps or some

special indications
6 Numeric values

permitted in the
column

Table 3: Comparison of static vs. dynamic validation (String data type).

Evaluation of DDoS attack experimental setup
In a simulation environment, the proposed system was tested.
An interactive web page is built and many virtual machines are
developed to access the same page by using multiple sources.
The attack is exploited and repeated over a number of days and
times by means of the target link. The experimental results for
attack were calculated without the system proposed and with the
defense system proposed, and by defending the attack that was
generated the number of bytes was rescued.

Discussion about DDoS attack detection using
historic traffic surge
Table 4 indicates the number of requests each user makes to
access a web page for a given time and day. The results show that
around 95% of attacks are detected on the basis of the thresholds
DDoS attack results in comparison to and without an XSD handler
(Figure 7).

Figure 6: Established protocol for dynamic validation.

2020

© Under License of Creative Commons Attribution 3.0 License 7

American Journal of Computer
Science and Information Technology Vol. 8 No. 5: 64

Table 5 shows the request for write byte counts detected and
tested according to the number of hits on the various user
requests. The specific byte counts for different times and number
of hits (Tables 4-6).

User No of
request/

day

Avg
request/
time in

(ms) THt

Threshold
request
count

(TRcnt)

TR diff Attack
detection

1 300 30 20 10 Detected

2 500 45 20 15 Detected

3 400 40 20 20 Detected

4 300 20 20 0 No attack

5 650 70 20 50 Detected

6 500 40 20 20 Detected

7 700 10 20 -10 No attack

Table 4: DDoS attack detection using historic traffic surge.

Evaluation of static and dynamic filter
In a simulation environment, the proposed system has been
tested. A webpage is designed for experimentation and a number
of malicious code requests are being tested. In a given time, for
several requests, the attack was manipulated and replicated with
the target page (Figures 8-10).

Figure 7: Historic date in of DDoS detection using XSD handler.

Figure 8: Byte saved on existing and proposed.

Figure 9: Comparison of accuracy-static versus dynamic validation
techniques.

Figure 10: Attacks prevented using filters.

Total hits Threshold
time

Threshold
valuec

Prevention hits
stopped

Preventive write
bytes
count

20 5 8 7 18288

40 5 8 7 85532

60 5 8 7 222165

80 5 8 7 87832

100 5 8 10 194552

Table 5: DDoS detection with byte count saved.

User ID Fraction of records Dynamic XSD filtration
additional records

Inverse Standard deviation Sparse outlier value Validity of the user

102 20 24 3642 59.27 0.74 Valid
104 15 8 3663 59.96 0.38 Valid
105 50 48 3588 57.49 1.70 Invalid
106 42 32 3612 58.28 1.27 Invalid
107 37 14 3635 59.04 0.86 Valid
108 46 16 3624 58.68 1.06 Invalid
110 28 10 3648 59.47 0.64 Valid
10 10 10 10 10 10 10

Table 6: Static vs. dynamic filter threshold detection.

2020

This article is available in: http://colorectal-cancer.imedpub.com/archive.php8

American Journal of Computer
Science and Information Technology Vol. 8 No. 5: 64

Results and Discussion
The comparison of the set of fixed and dynamic pattern results
by means of the threshold values that have been evaluated
for about 7 different users at different times with different IP
addresses with different causes of input fields in both static,
dynamical filters. The Sparse description of the dynamic filter is
shown in below.

The dynamic filter was used to stop nearly 95 percent of attacks
in comparison with the performance. Displays total number of
attacks prevented using a filter that prevents attacks by dynamic
filters more than static filters.

Conclusion
The new filtering policies to avoid XML-based attack were
suggested in this paper. This work proposes a dynamic filter
approach to effectively prevent attack. In addition, the service
provider will not be allowed directly to enter. It instead transmits
the application to the filter services, analyzes the service demand
and answers the user. It also validates the application and blocks
illegal users and prevents the IP from accessing the server
application.

References
1. Sajjad SM, Bouk SH, Yousaf M (2015) Neighbor node trust based

intrusion detection system for WSN. Procedia Comput Sci 63: 183-
188.

2. Ezhilarasi M, Krishnaveni V (2019) an evolutionary multipath energy-
efficient routing protocol (EMEER) for network lifetime enhancement
in wireless sensor networks. Soft Comput 23: 8367-8377.

3. Arumugam GS, Ponnuchamy T (2015) EE-LEACH: Development of
energy-efficient LEACH protocol for data gathering in WSN. J on
Wirel Communi and Netw 76: 1-9.

4. Kaur A, Kaur H (2017) a review on a hybrid approach using mobile
sink and fuzzy logic for region based clustering in WSN. Int J Comput
Technol 16: 7586-7590.

5. Kumar A (2017) Handling DDoS attacks in cloud computing based on
SDN system. Int J of Comput Sci & Eng Inf technol 2: 62- 68.

6. Shameli-Sendi A, Pourzandi M, Fekih-Ahmed M, Cheriet M (2015)
Taxonomy of distributed denial of service mitigation approaches for
cloud computing. J Netw Comput. Appl 58: 165-179.

7. Ezhilarasi M, Krishnaveni V (2019) An evolutionary multipath energy-
efficient routing protocol (EMEER) for network lifetime enhancement
in wireless sensor networks. Soft Comput 23: 8367-8377.

8. Sqalli MH, Al-Haidari F, Salah K (2011) Edos-shield-a two-steps
mitigation technique against edos attacks in cloud computing. In
fourth IEEE international conference on utility and cloud computing
49-56.

9. Nagarajan M. A New Approach to Improve Life Time Using Energy
Based Routing in Wireless Sensor Network. Int J Sci Res 3: 1734-1738.

10. Zhang ZH, Wang Q, Zhou XP (2005) Research and development of
distributed workflow based ERP system. Indu Con Compu 18: 5-7.

11. Ribeiro F, Metrôlho J, Leal J, Martins H, Bastos P (2018) A mobile
application to provide personalized information for mobility
impaired tourists. In world conference on information systems and
technologies 164-173.

12. Nagarajan M, Karthikeyan S (2012): A new approaches to increase the
life time and efficiency of wireless sensor network. In International
conference on pattern recognition, informatics and medical
engineering 231-235.

13. Nguyen HQ, Taniar D, Rahayu JW, Nguyen K (2011) Double-layered
schema integration of heterogeneous XML sources. J Syst Softw 84:
63-76.

14. Zhao Z, Liu W, Qian Y, Nie L, Yin Y et al (2018) Identifying advisor-
advisee relationships from co-author networks via a novel deep
model. Inform Sci 466: 258-269.

15. Shanmugapriya M, Munusamy N (2018) an approach to increase
energy and life time using power control optimization in wireless
sensor networks. Int J Pure Appl Math 119: 1171-1181.

16. Xu P, Sugano Y, Bulling (2016) Spatio-temporal modeling and
prediction of visual attention in graphical user interfaces. Proc 34th
Annu ACM Conf Human Factors Comput Syst 3299-3310.

17. Gnanaprasanambikai L, Munusamy N (2017) Survey of genetic
algorithm effectiveness in intrusion detection. International
conference on intelligent computing and control 1-5.

