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A Machine Learning Algorithm for Image 
Compression with application to Big Data 

Architecture: A Comparative Study

Abstract
Background and Objective: In this paper, our paradigm is based on the workflow 
proposed by Tchagna et al and we now propose a new compression scheme to 
implement in this step of the workflow. The goal of this study is to propose a 
new compression scheme, based on machine learning, for vector quantization 
and orthogonal transformation, and to propose a method to implement this 
compression for big data architectures. 

Methods: We propose developed a machine learning algorithm for the 
implementation of the compression step. The algorithm was developed in 
MATLAB. The proposed compression scheme performed in three main steps. 
First, an orthogonal transform (Walsh or Chebyshev) was applied to image blocks 
in order to reduce the range of image intensities. Second, a machine learning 
algorithm based on K-Means clustering and splitting method is utilized to cluster 
image pixels. Third, the cluster IDs for each pixel is encoded using Huffman coding. 
The different parameters used to evaluate the efficiency of the proposed algorithm 
are presented. We used Spark architecture with the compression algorithm 
for simultaneous image compression. We compared our obtained results with 
literature results. The comparison was based on three parameters, Peak Signal to 
Noise Ratio (PSNR), MSSIM and computation time.

Results: We applied our compression scheme to medical imagery. The obtained 
results of parameters for the Mean Structural Similarity (MSSIM) Index and 
Compression Ratio (CR) averaged 0.975% and 99.75%, respectively, for a codebook 
size equal to 256 for all test images. In comparison, with codebook size equal to 
256 or 512, our compression method outperforms the literature methods. The 
comparison suggests the efficiency of our compression method.

Conclusion: The MSSIM showed that the compression and decompression 
operation performed without loss of information. The comparison demonstrates 
the effectiveness of the proposed scheme.
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Introduction
Big data is not limited to data size, but should also include 
characteristics such as volume, velocity, and type [1]. In medicine, 
techniques have been established to obtain medical images with 
high definition and large size. For example, a modern CT scanner 
can yield a sub-millimeter slice thickness with increased in-

plane resolution resulting in 600 MB to a gigabyte (GB) of data 
[2]. The problem is the very large amount of data contained in 
an image can quickly saturate conventional systems. In modern 
computing, image compression is important. The compression 
enables a reduction in the required storage space for computer 
memory during image saves. This provides easier transmission 
and is less time-consuming. The development of a new method 
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able to compress biomedical images with a satisfactory 
compromise between the quality of the reconstructed image and 
the compression ratio is a challenge. Indeed, in [3], the authors 
propose a new concept and method for all such steps. In the 
present study, we consider the compression step and propose 
a scheme for image compression based on machine learning for 
vector quantization. There exist two types of compression: lossless 
compression (reconstructed data is identical to the original), and 
lossy compression (loss of data). However, lossless compression 
is limited in utility since compression rates are very low [4]. The 
compression ratio of the lossy compression scheme is high. 
Lossy compression algorithms are often based on orthogonal 
transformation [5-11]. Many lossy compression algorithms are 
performed in three steps: orthogonal transformation, vector 
quantization, and entropy encoding [12]. In image compression, 
quantization is an important step. Two techniques are often 
used to perform the quantization step: scalar quantization and 
vector quantization. Based upon distortion factor considerations 
introduced by Shannon [4,6], the best performance can be 
obtained using vectors instead of scalars. Thus, efficiency and 
performance of processing systems based on vector quantization 
(VQ) depend upon codebook design. In image compression, the 
quality of the reconstructed images depends on the codebooks 
used [13]. 

In this paper, we propose a compression scheme which performs 
three principal stages. In a first step, the image is decomposed into 
sub-blocks (8 × 8); on each sub-block, we applied an orthogonal 
transform (Walsh or Chebyshev) in order to reduce the range of 
image intensities. Secondly, a machine learning algorithm based 
on K-Means and split method calculates the centers of clusters 
and generates the codebook that is used for vector quantization 
on the transformed image. Third, the clusters IDs for each pixel 
are encoded using Huffman coding. We used MATLAB Software 
to write and simulate our algorithm. This paper has two essential 
goals. The first is to compare our proposed algorithm for image 
compression, with existing algorithms in the literature. The 
second aim of this paper is to propose a method to implement 
our compression algorithms in a workflow proposed in [3] using 
Spark. With this method, we can compress many biomedical 
images with the best performance parameters. The paper is 
organized as follows: in section 2, published methods in the 
field are examined. These methods are exploited theoretically 
throughout our work in section 3. Section 4 presents the obtained 
results on four medical images. Results are analyzed, compared 
and discussed with another work in section 5. A conclusion and 
future work are provided in section 6.

State of the Art
With the rapid development of the modern medical industry, 
medical images play an important role in accurate diagnosis 
by physicians [14]. However, many hospitals are now dealing 
with a large amount of data images. They used traditionally 
the structured data. Nowadays, they use both structured and 
unstructured data. To work effectively these hospitals use new 
methods and technologies like virtualization, big data, parallel 
processing, compression, artificial intelligence, etc., out of which 
the compression is the most effective one. For a medical image, 

the goal is to maintain the diagnostics-related information at 
a high compression ratio. It is worth mentioning that several 
papers have been published showing the used algorithms to have 
the compression methods increasingly effective. In that way, 
Lu and Chang that presented in [15] a snapshot of the recently 
developed schemes. The discussed schemes include mean 
distance ordered partial codebook search (MPS), enhance LBG 
(Linde, Buzo, and Gray) and some intelligent algorithms. In [11], 
Prattipati et al. compare integer Cosine and Chebyshev transform 
for image compression using variable quantization. The aims of 
their work were to examine cases where Discrete Chebyshev 
Transform (DChT) could be the alternative compression transform 
to Discrete Cosines Transform (DCT). However, their work was 
limited to the grayscale image compression and further; the 
use of a scalar quantification does not allow them to reach a 
high PSNR. Chiranjeevi and Jena proposed Cuckoo search (CS) 
metaheuristic optimization algorithm, which optimizes the LBG 
codebook by levy flight distribution function, which follows the 
Mantegna’s algorithm instead of Gaussian distribution [16]. In 
their proposed method, they applied Cuckoo search for the first 
time to design effective and efficient codebook which results in 
better vector quantization and leads to a high Peak Signal to Noise 
Ratio (PSNR) with good reconstructed image quality. In the same 
year, Chiranjeevi and Jena applied a bat optimization algorithm 
for efficient codebook design with an appropriate selection of 
tuning parameters (loudness and frequency) and proved better in 
PSNR and convergence time than FireFly-LBG [17] Their proposed 
method produces an efficient codebook with less computational 
time. They give results great PSNR due to its automatic zooming 
feature using an adjustable pulse emission rate and loudness of 
bats. FF-LBG (FireFly-LBG) algorithm is proposed by Horng [18]. 
Horng proposed an algorithm to construct the codebook of vector 
quantization based upon FF algorithm. The firefly algorithm may 
consider as a typical swarm based approach for optimization, in 
which the search algorithm is inspired by the social behavior of 
fireflies and the phenomenon of bioluminescent communication 
[18]. 

Hosseini and Naghsh-Nilchi work also on the VQ for medical image 
compression [19]. Their main idea is to separate the contextual 
region of interest and the background using a region growing 
segmentation approach; and then, encoding both regions using 
a novel method based on contextual vector quantization. The 
background is compressed with a higher compression ratio and 
the contextual region of interest is compressed with a lower 
compression ratio to maintain a high quality of the image 
(ultrasound image). However, the compression ratio remains low 
and, the fact to separate the image for compression takes a long 
time in the compression process. Unfortunately, the authors did 
not test the processing time of their algorithm. In [20], Hussein 
Abouali presented an adaptive VQ technic for image compression. 
Its proposed algorithm is a changed LBG algorithm and operates 
in three phases: initialization, iterative, and finalization. In the 
initial phase, the initial codebook is selected. During the iterative 
phase, the codebook is refined, and the finalization phase removes 
redundant codebook points. During the decoding process, pixels 
are assigned the gray value of its nearest neighbor codebook 
point. However, this method presents the same problem with 
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the LBG algorithm that used the very large codebook. Jiang et 
al. in [14] introduced an optimized medical image compression 
algorithm based on wavelet transform and vector quantization 
(VQ) with variable block size. They, respectively, manipulate the 
low-frequency components and high-frequency components 
with the Huffman coding and improved VQ by the aids of 
wavelet transformation (Bior4.4). They used a modified K-means 
approach, which is based on the energy function in the codebook 
training phase. Their introduced method, compress an image 
with good visual quality and, a high compression ratio. However, 
the method is more complex than some traditional compression 
algorithms presented in their paper. Phanprasit et al. presented 
a compression scheme based on VQ [12]. Their method performs 
in the three follow step. First, they use discrete wavelet transform 
to transform the image and fuzzy C-means, and support vector 
machine algorithms to design a codebook for vector quantization. 
Second, they use Huffman coding as a method of eliminating the 
redundant index. Finally, they improve the PSNR using a system 
with error compensation. Thus, we notice that Phanprasit et al. 
use two algorithms to calculate the clusters and generate the 
codebook for vectors quantization. However, although the quality 
of results got by the authors, the compression ration remains 
always low. Mata et al. in [13] proposed a fuzzy K-means families 
and K-means algorithms for codebook design. They used the 
Equal-average Nearest Neighbor Search in some of fuzzy K-means 
families, precisely in the partitioning of the training set. The 
acceleration of fuzzy K-means algorithms is also got by the use 
of a look ahead approach in the crisp phase of such algorithms, 
leading to a decrease in the number of iterations. However, they 
still need to set the number of K at the beginning of the algorithm.

Given the obtained results in [12-14], we can notice that the 
K-mean represents a good solution for the construction of the 
codebook for VQ. However, the disadvantage of K-mean lies 
in setting the value of K before the start of the program. To 
overcome this problem, we propose in this paper to use the split 
method to adapt the value of K for each image automatically. This 
has the consequence of having an optimal codebook for each 
image and to improve the quality of the reconstructed image 
with a good compression ratio as we will see in the obtained 
results of this paper. To the best of our knowledge, none of the 
existing researches presents a method able to implement a big 
data image. This drawback is the second main interest in this 
paper. As in [21] where the authors proposed the compression 
method for Picture Archiving and Communication System 
(PACS) implementation, we also proposed spark architecture for 
biomedical image compression using the introduced compression 
scheme. Our proposed architecture can then be implemented 
into a workflow proposed in [3].

Methods
Figure 1 illustrates the flowchart of the proposed compression 
and decompression scheme. In this figure, the orthogonal 
transformations refer to the conversion of an image from 
the time domain to other domains such as frequency domain 
through an orthogonal base. The image in the new domain 
brings out specific innate characteristics which can be suitable 
for some applications. In this work, we used Walsh transform 
and Chebyshev transform. 0 Additional, DChT overcomes DCT 

on images with sharp edges and high predictability [22]. In the 
two next subsections, we define the DChT and the discrete Walsh 
transform (DWhT) used to transform the images in our flowchart. 
In the results section, we will see the difference between the 
DChT and the DWhT on the quality of the reconstructed image 
and the performance parameters.

Discrete chebyhev transform (DChT)
The DChT stems from the Chebyshev polynomials Tk(x) of degree 
k and is defined in eq.  (1).

TK(x) =cos (k arcos x) ; x Є [-1, 1] ;  k=0,1,2,…0                 (1)

TK(X) are normalized polynomials such TK (1) =1 and satisfy the 
Chebyshev differential equation given in eq. (2).

(1-x2) y’’ –xy’ +k2y= 0                    (2)

The Chebyshev polynomials ( )kT x  are connected by the 
recurrence relation [11,22]:

T0 (x) =1

T1 (x)=X

TK+1 (x)=  2xTk (x) – Tk-1 (x) for k˃1                                                                                                                                         (3)

The DChT of order N is then defined in [23-25] eq. (4):

( ) ( ) ( )
1

0

N

k
x

F k f x T x
−

=

=∑                         (4)

k= 0,1,2,……,N -1

Where ( )F k  denotes the coefficient of orthonormal Chebyshev 
polynomials. ( )f x  is a one-dimension signal at time index x. The 
inverse DChT is given in eq. (5) [23-25]:

( ) ( ) ( )
1

0

N

k
k

f x F k T x
−

=

=∑                    (5)

x=0,1,2,…,N -1

Now, let consider a function with two variables f (x,y)sampled on 
a square grid NхN points. Its DChT is given in eq. (6), [25-27]:

( ) ( ) ( ) ( )
1 1

0 0
, ,

N N

j k
x y

F j k f x y T y T x
− −

= =

=∑∑                   (6)

j, k = 0,1,2,….,N -1

And its inverse DChT is given in eq. (7):

( ) ( ) ( ) ( )
1 1

0 0
, ,

N N

j k
j k

f x y F j k T y T x
− −

= =

=∑∑                     (7)

x, y =0,1,2,…,N -1

Discrete walsh transform (DWhT)
The Walsh function ( , )W k x is defined on the interval (0,1) in 
[28]

( ) ( )
2 1

0
( , ) / 2 2 , , 1k
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=

= +∑                  (8)
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Figure 1 Compression scheme based upon orthogonal transform, vector quantization and Huffman coding.

the window function.

When x= m/N and for some integer 0˂m˂N it comes that

W (k, m/N) =Wk (m/N)δm,n =Wk (n/N) δm,n =Wk (m,k / N)                 (9)

The orthonormality property of the Walsh functions is expressed 
in eq. (10)

w (m,x), W(N,X))=δm,n                  (10)

The discrete orthogonality of Walsh functions is defined in eq. 
(11) by Chirikjian GS et al. [28]. 

( ) ( )
1

,
0

, ,
N

m n
i

W m i N W n i N Nδ
−

=

=∑                 (11)

For a function with two variables ( , )f n m  sampled on square 
grid N2 points, its 2D Walsh transform is given in eq. (12) by 
Karagodin MA et al. [29].

1 1

0 0
( , ) ( , ) ( , ) ( , )

N N

k k
n n

F u v W u v f n m W u v
− −

= =

=∑∑                 (12)

Where WK(U,V)is the Walsh matrix having the same size as the 
function F (n,m) The inverse 2D transform is also defined in eq. 
(13) by Karagodin MA et al. [29].

1 1

2
0 0

1( , ) ( , ) ( , ) ( , )
N N

k k
n n

f n m W n m F u v W n m
N

− −

= =

= ∑∑                (13)

The transformation allows reducing the range of image intensities 
and prepares the image for the next step: the vector quantization 
that group the input data into vectors (non-overlapping) and 
“quantizer” each vector. 

Vector quantization
Vector quantization (VQ) is used in many signal processing 
contexts including data and image compression. VQ procedure 
for image compression includes three major parts: code-book 
generation, encoding and decoding [19].

Basic concepts: Vector quantization (VQ) was developed by 
Gersho and Gray [30-32]. A vector quantizer q may be defined 
[33] by an application of a set E into a set F E⊂ as in eq. (14).

{ }
0 1

^ ^

( ,..., ) ( )

, 1,..., ,

k

i

i

E F E
x x x q x

x A y i M
y F

−
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= →

= ∈ = =

∈

                (14)

Â  are a dictionary of length M and dimension k. E is partitioned 

by { }, 1,..., ,iS S i M= = with 
( )i i
xS y

q x
 

= = 
 

. The distortion between 

x̂ and x ( )ˆ,d x x  is a positive quantity or zero [32-37] given by 
eq. (15):

( ) ( )22

1

ˆ ˆˆ, ( ) ( )
L

i
d x x X X X i X i

=

= − = −∑               (15)

Where L is the vector size.

The total distortion of the quantizer for a given codebook is then:

( )
1

1( ) x ,
j

L

i j
Y Codebooki

D q Minimum d X Y
L ∈=

  =   
   

∑                  (16)

For the construction of our codebook, we used a machine 
learning algorithm that performs with unsupervised learning. 
Our unsupervised learning relies on the K-means algorithm with 
the splitting method.

K-Means and splitting algorithm: VQ makes it possible to have 
a good quantification of the image during the compression. 
However, the generated codebook during quantification is not 
always optimal. We introduced then a training algorithm (K-means) 
to calculate the codebook.  K-means is a typical distance-based 
cluster algorithm, and distance is used as a measure of similarity 
[38,39]. Here, K-means calculate and generate the optimal 
codebook that can be adapted to the transformed image [40]. 
K-Means does not solve the equiprobability problem between 
the vectors. Thus, we coupled the K-Means with a Split method to 
have equiprobably vectors of a lower probability of occurrence. 
This allows us to create a very suitable codebook for image 
compression and to close the lossless compression technics. The 
goal of the splitting method is to partition into two clusters the 
training vectors. It minimizes the mean square error between the 
training vectors and their closest cluster centroid. Based on work 
proposed by Franti et al. in [41], we construct our own method 
using K-means and splitting method for vector quantization 
codebook generator. Figure 2 shows the algorithm of our vector 
quantization method. 

Huffman coding: The Huffman coding is a compression algorithm 
based on the frequencies appearance of characters in an 
original document. Developed by David Huffman in 1952, the 
method relies on the principle of allocation of shorter codes 
for frequent values and longer codes to less frequent values 
[4,6,42,43]. This coding uses a table containing the frequencies 
appearance of each character to establish an optimal binary 
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MAE =max |I0 (i, j) – Ir (i, j)|                   (19)

Usually, in practice, MSSIM index allows evaluating the overall 
image quality. MSSIM is defined by Wang Z et al. and Hore A et 
al., [47,48] in eq. (20).

0
1

1( , I ) (x , y )
M

r j j
j

MSSIM I SSIM
M =

= ∑                  (20)

Where xj and yj are the image contents at the j-th local window; 
and M is the number of local windows in the image and SSIM 
(x, y) = [1 (x, y)]α .[c(x, y)] β .[s (x, y)]γ  with α˃ 0, β˃ 0 and γ˃ 
0 are parameters used to adjust the relative importance of 
the three components. The UIQ Index models any distortion 
as a combination of three different factors: loss of correlation, 
luminance distortion, and contrast distortion [49]. It is defined 
by in eq. (21).

( ) ( ) ( )
0

0

0
2 22 2

0

4
r

r

I I r

I I r

I I
Q

I I

σ

σ σ
=

 + +  

                    (21)

In equation (20) and (21) the best value 1 is achieved if and only 
Io= Ir.

The MSSIM, SSIM and UIQ as define above, are the practical index 
use to evaluate the overall image quality.

The Compression rate (CR) is defined as the ratio between 
the uncompressed size and compressed size. The CR is given by 
Sayood K and Salomon D et al., [4,6] in (22) and (23).

size of compressed imageCR =
size of original image

                 (22)

In percentage form, the CR is given by (16). 
size of compressed  imageCR (100%) 100  100

size of original image
= − ×                (23)

The compression time and decompression time are evaluated 
when we start the program in MATLAB. CT and DT depending on 
the computer used to simulate the program. We simulate our 
algorithm in a computer with the following parameters: 500 Go 
of the hard disk; Intel core I 7, 2 GHz; 8 Go of RAM. 

For the medical image, the goal of the introduced method in this 
paper is to maintain the diagnostic-related information at a high 
compression ratio. The medical applications require saving a large 
amount of images taken by different devices for patients in large 
numbers and for a long time [20]. Our compression algorithm 
being defined let us present how these algorithms can be 
implemented in the compression step of the workflow presented 
in [3]. Indeed, the challenge is then how you can compress at the 
same time many quantities of images. 

Implementation of our compression scheme in 
big data architecture
In this subsection, we just present a method used to implement 
our algorithm using MATLAB and the Spark framework in order 
to compress many images at the same time. MATLAB is used 
because it provides numerous capabilities for processing big 
data that scales from a single workstation to compute clusters, 
on Spark [50]. Our compression codes are written in MATLAB, 
we just need to use Spark to have access to our images and 

string representation. The procedure is generally decomposed 
into three parts: the creation of the frequencies appearance of 
the character table in the original data, the creation of a binary 
tree according to the previously calculated table, and encoding 
symbols in an optimal binary representation. Our three steps 
to perform the image compression are defined, now to see 
the effects of our compression scheme; we have to calculate 
performance parameters. 

Performance parameters for an image 
compression algorithm
There are eight parameters to evaluate the performance of our 
compression scheme: Mean Square Error (MSE), Maximum 
Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR), Mean 
Structural SIMilarity (MSSIM) Index, Universal Image Quality 
(UIQ) Index, the Compression Rate (CR), the compression time 
(CT) and decompression time (DT). The MSE and PSNR are defined 
by Kartheeswaran S et al. and Ayoobkhan MUA et al. [44,45] in 
eq. (17).

( ) ( )( )
1 1 2

0
0 0

1 , ,
*

M N

r
i j

MSE I i j I i j
M N

− −

= =

= −∑∑                  (17)

With 0I  the image to compress and rI the reconstructed image 
and (M, N) the size of the image. The PSNR is given in eq. (18).

2

10
25510logPSNR
MSE

 
=  

 
                   (18)

The MSE represents the mean error into energy. It shows the 
energy of the difference between the original image and the 
reconstructed image. PSNR gives an objective measure of the 
distortion introduced by the compression. It is expressed in 
deciBels (dB). Maximum Absolute Error (MAE) defined by (19) 
shows the worst-case error occurring in the compressed image 
[46].

Figure 2 Flowchart to generate codebook for vector quantization.
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simulate our algorithms. Indeed, Spark runs on top of existing 
Hadoop Distributed File System (HDFS) infrastructure to provide 
enhanced and additional functionality. However, we coupled 
MATLAB with Spark in order to have access to data image from 
HDFS and Spark and applied our compression MATLAB algorithm. 
In fact, MATLAB provides a single, high-performance environment 
for working with big data [51]. With MATLAB, we can explore, 
clean, process, and gain insight from big data using hundreds of 
data manipulation, mathematical, and statistical functions [51].To 
extract the most value out of your data on big data platforms like 
Spark, careful consideration is needed as to how data should be 
stored and extracted for analysis in MATLAB. We can use MATLAB 
and access to all types of engineering and business data from 
various sources (Images, audio, video, geospatial, JSON, financial 
data feeds, etc.). You can also explore portions of your data and 
prototype analytic. By using the mathematical method, machine 
learning, virtualization, optimization methods, you can build the 
algorithms and create models and analyze your entire dataset, 
right where your data lives. Therefore, it is possible to use Spark 
and MATLAB to implement an algorithm able to compress many 
images at the same time.

Results 
In this section, we present the obtained results for the compression 
scheme proposed in Figure 1 and our Spark architecture to 
compress images using our introduced algorithm. We use four 
medical images as test images. These images are chosen according 
to their spectral activities ranging from the least concentrated to 
the most concentrated finally to have a good conclusion on our 
algorithms. The Discrete Cosine Transform (DCT) is a transform 
used to represent the spectral activity [52]. The Figure 3 (a-d) 
shows these test images with their spectral activities. Image size 
is 512 × 512 × 3. Table 1 presents the obtained results with DChT 
and Table 2 those obtained with DWhT.

In Tables 1 and 2, we can observe that the variation of PSNR, 
MSE, MAE, CR, UIQ, MSSIM, CT and DT according to codebook 
size. For a codebook size of 512, the values of PSNR are high 
and the closer infinity for some images and MSSIM are equal to 
one. MSSIM equal to one and PSNR equal to infinity proof that 
the compression and decompression operate with no loss of 

information. In both tables, the compression ratio ranges between 
99.72% and 99.90% whatever the image and the codebook size. 
We can also notice that when the codebook size increases, the CR 
decreases slightly. Our results are then very satisfactory given the 
good compromise between MAE/UIQ and CR.

In Figures 4 (a,b) and 5 (a,b), we can see the impact of codebook 
size in our compression algorithm. These figures represent 
image after decompression. By using the Human Visual System 
(HVS), we can see that for some images, when the codebook 
size equal to 256, the original image equal to the decompressed 
image Figures 4 (a,b) and 5 (a,b) then presents some of our test 

Figure 3a Test images with their spectral activities in pelvis.

Figure 3b Test images with their spectral activities in head.

Figure 3c Test images with their spectral activities in abdomen.

Figure 3d Test images with their spectral activities in strange 
body.

http://wiki.apache.org/hadoop/HDFS
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Table 1: Summary of results with DChT method.

Images
Evaluation Code book Size
Parameters 64 128 256 512

Pelvis- (11)

PSNR (dB) 20.85 24.38 33.35 Inf.
MSE 534.11 236.98 30.01 0
MAE 7.78 4.94 1.76 0

CR  (%) 99.9 99.87 99.82 99.78
UIQ 0.951 0.978 0.998 1

MSSIM 0.865 0.915 0.976 1
CT (s) 175.81 172.57 175.44 201.64
DT (s) 12055.1 10943.55 12654.48 12319.96

Head-(12)

PSNR (dB) 23.14 26.82 37.05 Inf.
MSE 315.16 135.03 12.81 0
MAE 5.98 3.67 1.19 0

CR  (%) 99.91 99.87 99.82 99.78
UIQ 0.977 0.992 0.999 1

MSSIM 0.879 0.931 0.983 1
CT (s) 173.69 169.75 178.62 198.76
DT (s) 10746.27 11016.27 10705.48 11614.41

Abdomen-(13)

PSNR (dB) 21.11 24.91 33.28 Inf.
MSE 502.9 209.49 30.54 0
MAE 7.3 4.47 1.8 0

CR  (%) 99.89 99.87 99.82 99.78
UIQ 0.961 0.991 0.998 1

MSSIM 0.859 0.924 0.983 1
CT (s) 160.2 168.71 218.65 276.15
DT (s) 10301.2 10564.08 11187.09 11279.2

Strange Body-
(14)

PSNR (dB) 23.34 26.76 34.37 Inf.
MSE 301.13 137.1 23.73 0
MAE 4.04 2.51 0.86 0

CR  (%) 99.9 99.87 99.82 99.78
UIQ 0.72 0.791 0.844 1

MSSIM 0.772 0.85 0.958 1
CT (s) 172.71 165.91 176.24 216.17
DT (s) 12868.87 12390.25 12902.74 13011.2

Figure 4a Head images compressed and decompressed using DChT.

Table 2: Summary of results with DWhT method.

Images
Evaluation Codebook Size
Parameters 64 128 256 512

Pelvis-(11)

PSNR (dB) 21.05 24.28 31.15 Inf.
MSE 510.11 242.54 49.88 0
MAE 7.7 5.08 2.42 0

CR (%) 99.89 99.86 99.82 99.78
UIQ 0.954 0.98 0.997 1

MSSIM 0.869 0.92 0.971 1
CT (s) 6.93 9.89 16.06 34.27
DT (s) 11.43 14.99 22.22 43.57

Head-(12)

PSNR (dB) 23.06 26.33 33.52 Inf.
MSE 321 151.29 28.89 0
MAE 6.07 4.02 1.76 0

CR (%) 99.9 99.86 99.82 99.78
UIQ 0.976 0.991 0.999 1

MSSIM 0.877 0.929 0.979 1
CT (s) 7.08 9.54 16.72 36.52
DT (s) 11.97 14.38 22.93 46.15

   Abdomen-(13)

PSNR (dB) 21.11 24.6 30.93 Inf.
MSE 502.9 225.3 52.45 0
MAE 7.3 4.69 2.36 0

CR  (%) 99.89 99.86 99.82 99.78
UIQ 0.961 0.987 0.998 1

MSSIM 0.859 0.919 0.971 1
CT (s) 7.04 9.78 16.71 35.48
DT (s) 11.48 14.77 22.53 44.58

Strange Body-(14)

PSNR (dB) 23.4 26.03 31.8 52.06
MSE 297.6 162.17 42.95 0.4
MAE 3.79 2.55 1.79 0.02

CR (%) 99.89 99.85 99.82 99.78
UIQ 0.723 0.762 0.827 0.999

MSSIM 0.777 0.831 0.931 0.999
CT (s) 7.62 11.16 15.35 72.45
DT (s) 12.24 16.26 21.18 81.48
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images decompressed using DChT and DWhT, respectively. From 
these images, we confirm that the quantization step enormously 
influences the compression system, especially as regards the 
choice of codebook size. For the same simulation with the same 
configurations, the settings such as PNSR, MSE and CR may be 
slightly different. This is because we assumed in our program 
during the learning phase, that if no vector is close to the code 
word, we use a random vector by default.

Regarding the Figures 4 (a,b) and 5 (a,b), we can say using a 
subjective evaluation as Human Vision System (HVS), there is 
no difference between original and decompressed image for 
a codebook size equal to 256. For this codebook size, we get 

Figure 4b Abdomen images compressed and decompressed using DChT.

Figure 5a Head images compressed and decompressed using DWhT.

an average of PNSR equal to 32, MSSIM equal to 0.950 and, it 
becomes difficult to see the difference between these images. 

Figures 6 (a-d) and 7 (a-d) show the MSSIM and MAE according 
to the codebook size, respectively. On the Figures 6 (a-d) and 7 
(a-d), we see that the compression using the DChT outperform 
the compression using the DWhT. Regarding the Tables 1 and 
2, the compression and decompression time for DChT are high 
than the compression and decompression time for DWhT. The 
time is an important evaluation characteristic of an algorithm. 
So we can notice that the compression performs with DWhT 
and our training method (K-means and split method) for vector 
quantization give the satisfactory compromise between all 
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Figure 5b Abdomen images compressed and decompressed using DWhT.

Figure 6a Pelvis MSSIM according to codebook size of medical 
images test.

Figure 6b Head MSSIM according to codebook size of medical 
images test.

Figure 6c Abdomen MSSIM according to codebook size of medical 
images test.

Figure 6d Strange Body MSSIM according to codebook size of 
medical images test.

evaluation parameters and quality of the reconstructed image. 
We tested our algorithm on four medical images. Now we give 
a big data architecture based on Spark framework to compress 
many images at the same time. Spark framework is increasingly 
used finally to implement architectures enable to perform these 
tasks. This because it facilitates the implementation of algorithms 
with its embedded libraries. In the architecture of Figure 8, the 

images that are input are already diagnosed, validated and 
stored in small databases (DB) dedicated to each kind of image. 
As an example case, we took the database containing the images 
"Pelvis" patients. This DB is finally divided into several clusters to 
apply a parallel programming. The Map function allows searching 
for images having the same spectral properties and, to group 
them together using the Reduce by Key function. The Reduce by 
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Figure 8 defines all the sequence of the compression process of 
our images in the Spark. Thus, we need to design our algorithms 
and functions to use. Note here that our developed architecture 
in Figure 8 can be adapted to stand out all the Spark architecture 
of the workflow presented in [3]. 

Figure 7a Pelvis MAE according to codebook size of medical 
images test.

Figure 7b Head MAE according to codebook size of medical 
images test.

Figure 7c Abdomen MAE according to codebook size of medical 
images test.

Figure 7d Strange body MAE according to codebook size of 
medical images test.

Figure 8 Spark map reduce pipeline for biomedical image compression.

Key function keeps images that have the same spectral property 
together. Then, the compression is applied to these images with 
a codebook length adapted to each category of image group. At 
the end of this architecture, we have the Reduce function which 
prepares the compressed data and saves the compressed index 
and the dictionary in the clusters. Hence a DB intended for the 
backup of the compressed image data.
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Figure 9a Lena images for comparison. Figure 9b Peppers images for comparison.

Discussion
This paper relies on a comparison study, and it was difficult for 
us to compare our algorithm with a different algorithm found 
in the literature. Indeed, to perform an optimal comparison, we 
have to find in the literature, algorithms implemented on the 
same images as us. However, this is very difficult. To overcome 
this drawback, we finally implemented our algorithm on the 
same images as seen in the literature to conclude. Thus, we have 
seen in literature many works that use vector quantization with a 
training method to train an optimal codebook. Table 3 presents 
the comparison between our proposed algorithm and algorithms 
proposed in [16-18]. 

In Table 3, we compare our compression algorithm with these 

Images   Lena Peppers Baboon Goldhill
Compression 

Methods
 Codebook 

Size
PSNR (dB) CT (s) PSNR 

(dB)
CT (s) PSNR (dB) CT (s) PSNR 

(dB)
CT (s)

Our Method 
(K-Means+Splitting 

Method)

DWhT 64 22.3 12.3 21.3 14.19 21.2 12.39 23.7 12.21
128 26.1 17.67 24.7 18.87 23.3 16.2 27.4 20.58
256 31.9 42.84 30.3 24.33 26.7 21.48 31 21.21
512 Inf. 51.42 Inf. 48.81 Inf. 39.93 Inf. 33.93

DChT 64 23.1 157.62 22.4 194.79 22.1 209.61 25.4 153.75
128 27.3 201.33 25.6 221.07 24.9 246.48 29.8 199.26
256 33.2 209.43 32.8 235.65 28.5 255.84 33.7 214.65
512 Inf. 232.32 Inf. 243.21 Inf. 296.34 Inf. 219.51

Horng et al [18] FF-LBG 64 26.9 56.82 27.1 53.55 20.8 54.87 27.3 56.15
128 27.8 121.34 27.9 117.54 21.7 111.87 28.2 125.36
256 28.6 234.65 28.4 216.52 22.1 228.79 28.8 239.94
512 29.3 531.98 29.3 548.34 22.8 492.67 29.6 572.93

Chiranjeevi et al [16] CS-LBG 64 26.4 1429.49 28.5 1531.71 21.8 1507.09 27.4 1907.09
128 27.9 1609.65 30.2 1876.92 22.7 2195.83 28.2 1457.21
256 28.8 1597.38 30.8 1707.31 23.2 2006.82 29.3 2932.64
512 29.3 2638.43 32 2862.14 23.7 3544.22 30.9 2776.04

Chiranjeevi et al [17] BA-LBG 64 26.5 320.12 28.8 315.6 21.8 395.51 27.4 394.38
128 28.1 515.17 30.2 527.3 22.6 836.09 28.5 419.51
256 28.8 665.04 30.7 567.21 23.1 567.64 29.4 974.36
512 29.5 1342.51 31.8 1112.21 23.8 2458.56 30.6 1960.1

Table 3: Algorithm by PSNR and Computation time.

three previously cited works according to PSNR and computation 
time (compression time+decompression time). Figure 9 (a-d) 
shows the used images for this comparison. Table 3 Performance 
comparison (PSNR and CT) between the introduced methods 
and the Horng [18], Chiranjeevi et al. [17] and Chiranjeevi et al. 
methods.

In Table 3, we observe the variation of PSNR and computation 
time according to codebook size (64, 128, 256, and 512). We 
notice that, when the codebook size equal to 64, the PSNR of 
our method is less than FF-LBG, CS-LBG and BA-LBG methods. 
However, our methods (DWhT and DChT) achieve with the 
best computation time (average equal to 4.10 seconds). When 
the codebook size increase, the introduced method gives good 
parameters. For example, for codebook size equal to 256, we 
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lesser PSNR and bad reconstructed image (this only for codebook 
size equal to 64). The average computation time of both methods 
is around 40 seconds faster than the FF-LBG, CS-LBG and BA-LBG 
methods.

Figure 10 (a-c) shows us a better comparison using a bar chart of 
our methods and FF-LBG, CS-LBG and BA-LBG methods in a term 
of PSNR with a codebook size equal to 64, 128 and 256. We haven’t 
made a bar chart with a codebook size equal to 512 because 
using both methods the PSNR equal to infinity. We compared our 
compression methods with FF-LBG, CS-LBG and BA-LBG methods 
from [16-18]. Where in this three works, the authors used the 
Firefly algorithm, Cuckoo search algorithm and Bat algorithm 
respectively to optimize the codebook for vector quantization to 
improve the quality of the reconstructed image and computation 
time.  We noticed that for a codebook size equal to 64 or 128, 
our methods (DWhT and DChT) gives almost the same evaluation 
parameters with these three methods. However, when the 
codebook size is 256, our compression methods outperform 
compression methods presented in [16-18]. To perform all these 
comparisons, we have applied our compression algorithms on 
the same images used in these works. The computation time 
gives us an addition to the effectiveness of our method, which is 
tiny, compared to the three other methods.

Mata et al. introduced many methods for image compression 
based on K-means and other optimization methods for vector 
quantization. We compare here our compression method with 
the two best compression method introduced by in [13]. Fuzzy 
K-means Family 2 with Equal-Average Nearest Neighbor Search 
(FKM2-ENNS) and Modified Fuzzy K-means Family 2 with Partial 
Distortion (MFKM2-PDS). The comparison is based on two 

see that our method outperforms FF-LBG, CS-LBG and BA-
LBG methods in a term of PSNR and computation time. For a 
codebook size equal to 512, the PSNR of images is infinite with 
both methods. This proves that compression is achieved with no 
loss of information and show the efficiency of our both methods. 
From the observations of Table 3, computational time of both 
methods is very less compared to all other algorithms but has 

Figure 9c Baboon images for comparison.

Figure 9d Goldhill images for comparison.

Figure 10a Comparison between DWhT, DChT, FF-LBG, CS-LBG, BA-
LBG algorithms based on PNSR with codebook size 64.

Figure 10b Comparison between DWhT, DChT, FF-LBG, CS-LBG, BA-
LBG algorithms based on PNSR with codebook size 128.

Figure 10c Comparison between DWhT, DChT, FF-LBG, CS-LBG, BA-
LBG algorithms based on PNSR with codebook size 256.
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images, Lena and Goldhill using two evaluation parameters, 
PSNR and SSIM.  Table 4 shows a summary of obtained results 
for this comparison and Figures 11 (a,b) and 12 (a,b) the 
graphical representations. Regarding Table 4, Figures 11 (a,b) 
and 12 (a,b), we notice that when the codebook size equals to 
64 the Mata Method outperforms ours. This explained because 
not all the clusters got by generating the codebook are yet 
equiprobably. However, when the codebook size increases, there 
is equiprobability between the clusters and therefore our method 
outperforms that of Mata.

Conclusion
Throughout this paper, we tried to show the importance 

to build a satisfactory compression scheme to compress 
biomedical images for big data architecture. We have shown 
our overall results by comparing performance parameters for 
the compression algorithms. Our Spark architecture shows us 
how we can implement the introduced algorithm and compress 
biomedical images. This architecture is more complete, easier, 
and adaptable in all the steps as compared with those proposed 
in the literature.  We based the work on a MATLAB environment 
to simulate our compression algorithm. By calculating the 
evaluation parameter, we notice that the PSNR, MSSIM and CR 
give us the good values according to the codebook size.  Regarding 
the obtained parameters during the comparison, we can notice 
that our method is better than literature method and give the 

Figure 11a Comparison between DWhT, DChT, FKM2-ENNS, MFKM2-
PDS algorithms based on PNSR of Lena.

Figure 11b Comparison between DWhT, DChT, FKM2-ENNS, MFKM2-
PDS algorithms based on PNSR of Goldhill.

Figure 12a Comparison between DWhT, DChT, FKM2-ENNS, MFKM2-
PDS algorithms based on SSIM in Goldhill.

Figure 12b Comparison between DWhT, DChT, FKM2-ENNS, MFKM2-
PDS algorithms based on SSIM in Lena.

Table 4: Performance comparison (PSNR and CT) between the introduced methods and the Mata et al [13] methods.
Images   Lena Gold hill

Compression Methods Codebook Size PSNR (dB) MSSIM PSNR (dB) MSSIM

Our Method (K-Means+Splitting Method)

DWhT
64 22.3 0.6121 23.7 0.6379

128 26.1 0.7302 27.4 0.751
256 31.9 0.8995 31 0.8692

DChT
64 23.1 0.6274 25.4 0.7114

128 27.3 0.7501 29.8 0.845
256 33.2 0.9454 33.7 0.9508

Mata et al [13]

MFKM2-PDS
64 27.85 0.8179 27.73 0.761

128 28.97 0.852 28.75 0.8048
256 30.43 0.8852 29.92 0.846

FKM2-ENNS
64 27.8 0.8177 27.7 0.7605

128 29.07 0.8518 28.69 0.8041
256 30.23 0.8842 29.8 0.845
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good compromise between all the evaluation parameters. This 
comparison proves the efficiency of our compression algorithms. 
This work achieves with eight evaluation parameters, that are 
many than those used in [13,16-18,53] where the authors used 
three or four evaluation parameters. As future work, we propose 
to make a data preprocessing using an unsupervised algorithm 
finally to have a codebook model and use a supervised learning 
to reduce codebook computation time for each image during the 
vector quantization step.
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