
iMedPub Journals
www.imedpub.com

British Biomedical Bulletin
ISSN 2347-5447

2019
Vol. 7 No. 1:316

1© Under License of Creative Commons Attribution 3.0 License | This article is available from: http://www.imedpub.com/british-biomedical-bulletin/

Research Article

A Machine Learning Algorithm for Image
Compression with application to Big Data

Architecture: A Comparative Study

Abstract
Background and Objective: In this paper, our paradigm is based on the workflow
proposed by Tchagna et al and we now propose a new compression scheme to
implement in this step of the workflow. The goal of this study is to propose a
new compression scheme, based on machine learning, for vector quantization
and orthogonal transformation, and to propose a method to implement this
compression for big data architectures.

Methods: We propose developed a machine learning algorithm for the
implementation of the compression step. The algorithm was developed in
MATLAB. The proposed compression scheme performed in three main steps.
First, an orthogonal transform (Walsh or Chebyshev) was applied to image blocks
in order to reduce the range of image intensities. Second, a machine learning
algorithm based on K-Means clustering and splitting method is utilized to cluster
image pixels. Third, the cluster IDs for each pixel is encoded using Huffman coding.
The different parameters used to evaluate the efficiency of the proposed algorithm
are presented. We used Spark architecture with the compression algorithm
for simultaneous image compression. We compared our obtained results with
literature results. The comparison was based on three parameters, Peak Signal to
Noise Ratio (PSNR), MSSIM and computation time.

Results: We applied our compression scheme to medical imagery. The obtained
results of parameters for the Mean Structural Similarity (MSSIM) Index and
Compression Ratio (CR) averaged 0.975% and 99.75%, respectively, for a codebook
size equal to 256 for all test images. In comparison, with codebook size equal to
256 or 512, our compression method outperforms the literature methods. The
comparison suggests the efficiency of our compression method.

Conclusion: The MSSIM showed that the compression and decompression
operation performed without loss of information. The comparison demonstrates
the effectiveness of the proposed scheme.

Keywords: Big data; Machine learning; Image compression; MATLAB/Spark;
Vector quantization

Received: November 19, 2018, Accepted: January 16, 2019, Published: January 25, 2019

Kouanou AT1*,
Tchiotsop D2, Tchinda R3
and Tansaa ZD4

1 Condensed Matter Research Unit
for Electronics and Signal Processing
(UR-MACETS), University Of Dschang,
Cameroon

2 Research Unit of Automatics and Applied
Informatics (UR-AIA), University of
Dschang-Cameroon

3 Research Unit of Engineering of Industrial
Systems and Environment (UR-ISIE),
University of Dschang-Cameroon

4 National Advanced School of Posts,
Telecommunications and Information
Communication, and Technologies
(SUP'PTIC), Cameroon

*Corresponding author:
Aurelle Tchagna Kouanou

 tkaurelle@gmail.com

Faculty of Science, Condensed Matter
Research Unit for Electronics and Signal
Processing (UR-MACETS), University Of
Dschang, Cameroon.

Tel: +237696263641

Citation: Kouanou AT, Tchiotsop D, Tchinda
R, Tansaa ZD (2019) A Machine Learning
Algorithm for Image Compression with
application to Big Data Architecture: A
Comparative Study. Br Biomed Bull Vol.7
No.1:316.

Introduction
Big data is not limited to data size, but should also include
characteristics such as volume, velocity, and type [1]. In medicine,
techniques have been established to obtain medical images with
high definition and large size. For example, a modern CT scanner
can yield a sub-millimeter slice thickness with increased in-

plane resolution resulting in 600 MB to a gigabyte (GB) of data
[2]. The problem is the very large amount of data contained in
an image can quickly saturate conventional systems. In modern
computing, image compression is important. The compression
enables a reduction in the required storage space for computer
memory during image saves. This provides easier transmission
and is less time-consuming. The development of a new method

2019
Vol. 7 No. 1:316

2 This article is available from: http://www.imedpub.com/british-biomedical-bulletin/

British Biomedical Bulletin
ISSN 2347-5447

able to compress biomedical images with a satisfactory
compromise between the quality of the reconstructed image and
the compression ratio is a challenge. Indeed, in [3], the authors
propose a new concept and method for all such steps. In the
present study, we consider the compression step and propose
a scheme for image compression based on machine learning for
vector quantization. There exist two types of compression: lossless
compression (reconstructed data is identical to the original), and
lossy compression (loss of data). However, lossless compression
is limited in utility since compression rates are very low [4]. The
compression ratio of the lossy compression scheme is high.
Lossy compression algorithms are often based on orthogonal
transformation [5-11]. Many lossy compression algorithms are
performed in three steps: orthogonal transformation, vector
quantization, and entropy encoding [12]. In image compression,
quantization is an important step. Two techniques are often
used to perform the quantization step: scalar quantization and
vector quantization. Based upon distortion factor considerations
introduced by Shannon [4,6], the best performance can be
obtained using vectors instead of scalars. Thus, efficiency and
performance of processing systems based on vector quantization
(VQ) depend upon codebook design. In image compression, the
quality of the reconstructed images depends on the codebooks
used [13].

In this paper, we propose a compression scheme which performs
three principal stages. In a first step, the image is decomposed into
sub-blocks (8 × 8); on each sub-block, we applied an orthogonal
transform (Walsh or Chebyshev) in order to reduce the range of
image intensities. Secondly, a machine learning algorithm based
on K-Means and split method calculates the centers of clusters
and generates the codebook that is used for vector quantization
on the transformed image. Third, the clusters IDs for each pixel
are encoded using Huffman coding. We used MATLAB Software
to write and simulate our algorithm. This paper has two essential
goals. The first is to compare our proposed algorithm for image
compression, with existing algorithms in the literature. The
second aim of this paper is to propose a method to implement
our compression algorithms in a workflow proposed in [3] using
Spark. With this method, we can compress many biomedical
images with the best performance parameters. The paper is
organized as follows: in section 2, published methods in the
field are examined. These methods are exploited theoretically
throughout our work in section 3. Section 4 presents the obtained
results on four medical images. Results are analyzed, compared
and discussed with another work in section 5. A conclusion and
future work are provided in section 6.

State of the Art
With the rapid development of the modern medical industry,
medical images play an important role in accurate diagnosis
by physicians [14]. However, many hospitals are now dealing
with a large amount of data images. They used traditionally
the structured data. Nowadays, they use both structured and
unstructured data. To work effectively these hospitals use new
methods and technologies like virtualization, big data, parallel
processing, compression, artificial intelligence, etc., out of which
the compression is the most effective one. For a medical image,

the goal is to maintain the diagnostics-related information at
a high compression ratio. It is worth mentioning that several
papers have been published showing the used algorithms to have
the compression methods increasingly effective. In that way,
Lu and Chang that presented in [15] a snapshot of the recently
developed schemes. The discussed schemes include mean
distance ordered partial codebook search (MPS), enhance LBG
(Linde, Buzo, and Gray) and some intelligent algorithms. In [11],
Prattipati et al. compare integer Cosine and Chebyshev transform
for image compression using variable quantization. The aims of
their work were to examine cases where Discrete Chebyshev
Transform (DChT) could be the alternative compression transform
to Discrete Cosines Transform (DCT). However, their work was
limited to the grayscale image compression and further; the
use of a scalar quantification does not allow them to reach a
high PSNR. Chiranjeevi and Jena proposed Cuckoo search (CS)
metaheuristic optimization algorithm, which optimizes the LBG
codebook by levy flight distribution function, which follows the
Mantegna’s algorithm instead of Gaussian distribution [16]. In
their proposed method, they applied Cuckoo search for the first
time to design effective and efficient codebook which results in
better vector quantization and leads to a high Peak Signal to Noise
Ratio (PSNR) with good reconstructed image quality. In the same
year, Chiranjeevi and Jena applied a bat optimization algorithm
for efficient codebook design with an appropriate selection of
tuning parameters (loudness and frequency) and proved better in
PSNR and convergence time than FireFly-LBG [17] Their proposed
method produces an efficient codebook with less computational
time. They give results great PSNR due to its automatic zooming
feature using an adjustable pulse emission rate and loudness of
bats. FF-LBG (FireFly-LBG) algorithm is proposed by Horng [18].
Horng proposed an algorithm to construct the codebook of vector
quantization based upon FF algorithm. The firefly algorithm may
consider as a typical swarm based approach for optimization, in
which the search algorithm is inspired by the social behavior of
fireflies and the phenomenon of bioluminescent communication
[18].

Hosseini and Naghsh-Nilchi work also on the VQ for medical image
compression [19]. Their main idea is to separate the contextual
region of interest and the background using a region growing
segmentation approach; and then, encoding both regions using
a novel method based on contextual vector quantization. The
background is compressed with a higher compression ratio and
the contextual region of interest is compressed with a lower
compression ratio to maintain a high quality of the image
(ultrasound image). However, the compression ratio remains low
and, the fact to separate the image for compression takes a long
time in the compression process. Unfortunately, the authors did
not test the processing time of their algorithm. In [20], Hussein
Abouali presented an adaptive VQ technic for image compression.
Its proposed algorithm is a changed LBG algorithm and operates
in three phases: initialization, iterative, and finalization. In the
initial phase, the initial codebook is selected. During the iterative
phase, the codebook is refined, and the finalization phase removes
redundant codebook points. During the decoding process, pixels
are assigned the gray value of its nearest neighbor codebook
point. However, this method presents the same problem with

2019
Vol. 7 No. 1:316

3

British Biomedical Bulletin
ISSN 2347-5447

© Under License of Creative Commons Attribution 3.0 License

the LBG algorithm that used the very large codebook. Jiang et
al. in [14] introduced an optimized medical image compression
algorithm based on wavelet transform and vector quantization
(VQ) with variable block size. They, respectively, manipulate the
low-frequency components and high-frequency components
with the Huffman coding and improved VQ by the aids of
wavelet transformation (Bior4.4). They used a modified K-means
approach, which is based on the energy function in the codebook
training phase. Their introduced method, compress an image
with good visual quality and, a high compression ratio. However,
the method is more complex than some traditional compression
algorithms presented in their paper. Phanprasit et al. presented
a compression scheme based on VQ [12]. Their method performs
in the three follow step. First, they use discrete wavelet transform
to transform the image and fuzzy C-means, and support vector
machine algorithms to design a codebook for vector quantization.
Second, they use Huffman coding as a method of eliminating the
redundant index. Finally, they improve the PSNR using a system
with error compensation. Thus, we notice that Phanprasit et al.
use two algorithms to calculate the clusters and generate the
codebook for vectors quantization. However, although the quality
of results got by the authors, the compression ration remains
always low. Mata et al. in [13] proposed a fuzzy K-means families
and K-means algorithms for codebook design. They used the
Equal-average Nearest Neighbor Search in some of fuzzy K-means
families, precisely in the partitioning of the training set. The
acceleration of fuzzy K-means algorithms is also got by the use
of a look ahead approach in the crisp phase of such algorithms,
leading to a decrease in the number of iterations. However, they
still need to set the number of K at the beginning of the algorithm.

Given the obtained results in [12-14], we can notice that the
K-mean represents a good solution for the construction of the
codebook for VQ. However, the disadvantage of K-mean lies
in setting the value of K before the start of the program. To
overcome this problem, we propose in this paper to use the split
method to adapt the value of K for each image automatically. This
has the consequence of having an optimal codebook for each
image and to improve the quality of the reconstructed image
with a good compression ratio as we will see in the obtained
results of this paper. To the best of our knowledge, none of the
existing researches presents a method able to implement a big
data image. This drawback is the second main interest in this
paper. As in [21] where the authors proposed the compression
method for Picture Archiving and Communication System
(PACS) implementation, we also proposed spark architecture for
biomedical image compression using the introduced compression
scheme. Our proposed architecture can then be implemented
into a workflow proposed in [3].

Methods
Figure 1 illustrates the flowchart of the proposed compression
and decompression scheme. In this figure, the orthogonal
transformations refer to the conversion of an image from
the time domain to other domains such as frequency domain
through an orthogonal base. The image in the new domain
brings out specific innate characteristics which can be suitable
for some applications. In this work, we used Walsh transform
and Chebyshev transform. 0 Additional, DChT overcomes DCT

on images with sharp edges and high predictability [22]. In the
two next subsections, we define the DChT and the discrete Walsh
transform (DWhT) used to transform the images in our flowchart.
In the results section, we will see the difference between the
DChT and the DWhT on the quality of the reconstructed image
and the performance parameters.

Discrete chebyhev transform (DChT)
The DChT stems from the Chebyshev polynomials Tk(x) of degree
k and is defined in eq. (1).

TK(x) =cos (k arcos x) ; x Є [-1, 1] ; k=0,1,2,…0 (1)

TK(X) are normalized polynomials such TK (1) =1 and satisfy the
Chebyshev differential equation given in eq. (2).

(1-x2) y’’ –xy’ +k2y= 0 (2)

The Chebyshev polynomials ()kT x are connected by the
recurrence relation [11,22]:

T0 (x) =1

T1 (x)=X

TK+1 (x)= 2xTk (x) – Tk-1 (x) for k˃1 (3)

The DChT of order N is then defined in [23-25] eq. (4):

() () ()
1

0

N

k
x

F k f x T x
−

=

=∑ (4)

k= 0,1,2,……,N -1

Where ()F k denotes the coefficient of orthonormal Chebyshev
polynomials. ()f x is a one-dimension signal at time index x. The
inverse DChT is given in eq. (5) [23-25]:

() () ()
1

0

N

k
k

f x F k T x
−

=

=∑ (5)

x=0,1,2,…,N -1

Now, let consider a function with two variables f (x,y)sampled on
a square grid NхN points. Its DChT is given in eq. (6), [25-27]:

() () () ()
1 1

0 0
, ,

N N

j k
x y

F j k f x y T y T x
− −

= =

=∑∑ (6)

j, k = 0,1,2,….,N -1

And its inverse DChT is given in eq. (7):

() () () ()
1 1

0 0
, ,

N N

j k
j k

f x y F j k T y T x
− −

= =

=∑∑ (7)

x, y =0,1,2,…,N -1

Discrete walsh transform (DWhT)
The Walsh function (,)W k x is defined on the interval (0,1) in
[28]

() ()
2 1

0
(,) / 2 2 , , 1k

k
n

W k x W n win x n n
γ

γ
−

=

= +∑ (8)

Where N=2k; ()
()

{ }

1 ,
, , 0 [,]

1 ,
2

for x a b
win x a b for x a b

for x a b

 ∈

= ∉

 ∈

 win represented

2019
Vol. 7 No. 1:316

4 This article is available from: http://www.imedpub.com/british-biomedical-bulletin/

British Biomedical Bulletin
ISSN 2347-5447

 DWhT or DChT

 VECTOR
QUANTIFICATION HUFFMAN

CODING

ORIGINAL
IMAGE

COMPRESSED
IMAGE

 INVERSE
DWhT or DChT

 VECTOR
DEQUANTIFICATION

 HUFFMAN
DECODING

COMPRESSED
IMAGE

DECOMPRESSED
IMAGE

Figure 1 Compression scheme based upon orthogonal transform, vector quantization and Huffman coding.

the window function.

When x= m/N and for some integer 0˂m˂N it comes that

W (k, m/N) =Wk (m/N)δm,n =Wk (n/N) δm,n =Wk (m,k / N) (9)

The orthonormality property of the Walsh functions is expressed
in eq. (10)

w (m,x), W(N,X))=δm,n (10)

The discrete orthogonality of Walsh functions is defined in eq.
(11) by Chirikjian GS et al. [28].

() ()
1

,
0

, ,
N

m n
i

W m i N W n i N Nδ
−

=

=∑ (11)

For a function with two variables (,)f n m sampled on square
grid N2 points, its 2D Walsh transform is given in eq. (12) by
Karagodin MA et al. [29].

1 1

0 0
(,) (,) (,) (,)

N N

k k
n n

F u v W u v f n m W u v
− −

= =

=∑∑ (12)

Where WK(U,V)is the Walsh matrix having the same size as the
function F (n,m) The inverse 2D transform is also defined in eq.
(13) by Karagodin MA et al. [29].

1 1

2
0 0

1(,) (,) (,) (,)
N N

k k
n n

f n m W n m F u v W n m
N

− −

= =

= ∑∑ (13)

The transformation allows reducing the range of image intensities
and prepares the image for the next step: the vector quantization
that group the input data into vectors (non-overlapping) and
“quantizer” each vector.

Vector quantization
Vector quantization (VQ) is used in many signal processing
contexts including data and image compression. VQ procedure
for image compression includes three major parts: code-book
generation, encoding and decoding [19].

Basic concepts: Vector quantization (VQ) was developed by
Gersho and Gray [30-32]. A vector quantizer q may be defined
[33] by an application of a set E into a set F E⊂ as in eq. (14).

{ }
0 1

^ ^

(,...,) ()

, 1,..., ,

k

i

i

E F E
x x x q x

x A y i M
y F

−

→ ⊂
= →

= ∈ = =

∈

 (14)

Â are a dictionary of length M and dimension k. E is partitioned

by { }, 1,..., ,iS S i M= = with
()i i
xS y

q x

= =

. The distortion between

x̂ and x ()ˆ,d x x is a positive quantity or zero [32-37] given by
eq. (15):

() ()22

1

ˆ ˆˆ, () ()
L

i
d x x X X X i X i

=

= − = −∑ (15)

Where L is the vector size.

The total distortion of the quantizer for a given codebook is then:

()
1

1() x ,
j

L

i j
Y Codebooki

D q Minimum d X Y
L ∈=

 =

∑ (16)

For the construction of our codebook, we used a machine
learning algorithm that performs with unsupervised learning.
Our unsupervised learning relies on the K-means algorithm with
the splitting method.

K-Means and splitting algorithm: VQ makes it possible to have
a good quantification of the image during the compression.
However, the generated codebook during quantification is not
always optimal. We introduced then a training algorithm (K-means)
to calculate the codebook. K-means is a typical distance-based
cluster algorithm, and distance is used as a measure of similarity
[38,39]. Here, K-means calculate and generate the optimal
codebook that can be adapted to the transformed image [40].
K-Means does not solve the equiprobability problem between
the vectors. Thus, we coupled the K-Means with a Split method to
have equiprobably vectors of a lower probability of occurrence.
This allows us to create a very suitable codebook for image
compression and to close the lossless compression technics. The
goal of the splitting method is to partition into two clusters the
training vectors. It minimizes the mean square error between the
training vectors and their closest cluster centroid. Based on work
proposed by Franti et al. in [41], we construct our own method
using K-means and splitting method for vector quantization
codebook generator. Figure 2 shows the algorithm of our vector
quantization method.

Huffman coding: The Huffman coding is a compression algorithm
based on the frequencies appearance of characters in an
original document. Developed by David Huffman in 1952, the
method relies on the principle of allocation of shorter codes
for frequent values and longer codes to less frequent values
[4,6,42,43]. This coding uses a table containing the frequencies
appearance of each character to establish an optimal binary

2019
Vol. 7 No. 1:316

5

British Biomedical Bulletin
ISSN 2347-5447

© Under License of Creative Commons Attribution 3.0 License

MAE =max |I0 (i, j) – Ir (i, j)| (19)

Usually, in practice, MSSIM index allows evaluating the overall
image quality. MSSIM is defined by Wang Z et al. and Hore A et
al., [47,48] in eq. (20).

0
1

1(, I) (x , y)
M

r j j
j

MSSIM I SSIM
M =

= ∑ (20)

Where xj and yj are the image contents at the j-th local window;
and M is the number of local windows in the image and SSIM
(x, y) = [1 (x, y)]α .[c(x, y)] β .[s (x, y)]γ with α˃ 0, β˃ 0 and γ˃
0 are parameters used to adjust the relative importance of
the three components. The UIQ Index models any distortion
as a combination of three different factors: loss of correlation,
luminance distortion, and contrast distortion [49]. It is defined
by in eq. (21).

() () ()
0

0

0
2 22 2

0

4
r

r

I I r

I I r

I I
Q

I I

σ

σ σ
=

 + +

 (21)

In equation (20) and (21) the best value 1 is achieved if and only
Io= Ir.

The MSSIM, SSIM and UIQ as define above, are the practical index
use to evaluate the overall image quality.

The Compression rate (CR) is defined as the ratio between
the uncompressed size and compressed size. The CR is given by
Sayood K and Salomon D et al., [4,6] in (22) and (23).

size of compressed imageCR =
size of original image

 (22)

In percentage form, the CR is given by (16).
size of compressed imageCR (100%) 100 100

size of original image
= − × (23)

The compression time and decompression time are evaluated
when we start the program in MATLAB. CT and DT depending on
the computer used to simulate the program. We simulate our
algorithm in a computer with the following parameters: 500 Go
of the hard disk; Intel core I 7, 2 GHz; 8 Go of RAM.

For the medical image, the goal of the introduced method in this
paper is to maintain the diagnostic-related information at a high
compression ratio. The medical applications require saving a large
amount of images taken by different devices for patients in large
numbers and for a long time [20]. Our compression algorithm
being defined let us present how these algorithms can be
implemented in the compression step of the workflow presented
in [3]. Indeed, the challenge is then how you can compress at the
same time many quantities of images.

Implementation of our compression scheme in
big data architecture
In this subsection, we just present a method used to implement
our algorithm using MATLAB and the Spark framework in order
to compress many images at the same time. MATLAB is used
because it provides numerous capabilities for processing big
data that scales from a single workstation to compute clusters,
on Spark [50]. Our compression codes are written in MATLAB,
we just need to use Spark to have access to our images and

string representation. The procedure is generally decomposed
into three parts: the creation of the frequencies appearance of
the character table in the original data, the creation of a binary
tree according to the previously calculated table, and encoding
symbols in an optimal binary representation. Our three steps
to perform the image compression are defined, now to see
the effects of our compression scheme; we have to calculate
performance parameters.

Performance parameters for an image
compression algorithm
There are eight parameters to evaluate the performance of our
compression scheme: Mean Square Error (MSE), Maximum
Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR), Mean
Structural SIMilarity (MSSIM) Index, Universal Image Quality
(UIQ) Index, the Compression Rate (CR), the compression time
(CT) and decompression time (DT). The MSE and PSNR are defined
by Kartheeswaran S et al. and Ayoobkhan MUA et al. [44,45] in
eq. (17).

() ()()
1 1 2

0
0 0

1 , ,
*

M N

r
i j

MSE I i j I i j
M N

− −

= =

= −∑∑ (17)

With 0I the image to compress and rI the reconstructed image
and (M, N) the size of the image. The PSNR is given in eq. (18).

2

10
25510logPSNR
MSE

=

 (18)

The MSE represents the mean error into energy. It shows the
energy of the difference between the original image and the
reconstructed image. PSNR gives an objective measure of the
distortion introduced by the compression. It is expressed in
deciBels (dB). Maximum Absolute Error (MAE) defined by (19)
shows the worst-case error occurring in the compressed image
[46].

Figure 2 Flowchart to generate codebook for vector quantization.

2019
Vol. 7 No. 1:316

6 This article is available from: http://www.imedpub.com/british-biomedical-bulletin/

British Biomedical Bulletin
ISSN 2347-5447

simulate our algorithms. Indeed, Spark runs on top of existing
Hadoop Distributed File System (HDFS) infrastructure to provide
enhanced and additional functionality. However, we coupled
MATLAB with Spark in order to have access to data image from
HDFS and Spark and applied our compression MATLAB algorithm.
In fact, MATLAB provides a single, high-performance environment
for working with big data [51]. With MATLAB, we can explore,
clean, process, and gain insight from big data using hundreds of
data manipulation, mathematical, and statistical functions [51].To
extract the most value out of your data on big data platforms like
Spark, careful consideration is needed as to how data should be
stored and extracted for analysis in MATLAB. We can use MATLAB
and access to all types of engineering and business data from
various sources (Images, audio, video, geospatial, JSON, financial
data feeds, etc.). You can also explore portions of your data and
prototype analytic. By using the mathematical method, machine
learning, virtualization, optimization methods, you can build the
algorithms and create models and analyze your entire dataset,
right where your data lives. Therefore, it is possible to use Spark
and MATLAB to implement an algorithm able to compress many
images at the same time.

Results
In this section, we present the obtained results for the compression
scheme proposed in Figure 1 and our Spark architecture to
compress images using our introduced algorithm. We use four
medical images as test images. These images are chosen according
to their spectral activities ranging from the least concentrated to
the most concentrated finally to have a good conclusion on our
algorithms. The Discrete Cosine Transform (DCT) is a transform
used to represent the spectral activity [52]. The Figure 3 (a-d)
shows these test images with their spectral activities. Image size
is 512 × 512 × 3. Table 1 presents the obtained results with DChT
and Table 2 those obtained with DWhT.

In Tables 1 and 2, we can observe that the variation of PSNR,
MSE, MAE, CR, UIQ, MSSIM, CT and DT according to codebook
size. For a codebook size of 512, the values of PSNR are high
and the closer infinity for some images and MSSIM are equal to
one. MSSIM equal to one and PSNR equal to infinity proof that
the compression and decompression operate with no loss of

information. In both tables, the compression ratio ranges between
99.72% and 99.90% whatever the image and the codebook size.
We can also notice that when the codebook size increases, the CR
decreases slightly. Our results are then very satisfactory given the
good compromise between MAE/UIQ and CR.

In Figures 4 (a,b) and 5 (a,b), we can see the impact of codebook
size in our compression algorithm. These figures represent
image after decompression. By using the Human Visual System
(HVS), we can see that for some images, when the codebook
size equal to 256, the original image equal to the decompressed
image Figures 4 (a,b) and 5 (a,b) then presents some of our test

Figure 3a Test images with their spectral activities in pelvis.

Figure 3b Test images with their spectral activities in head.

Figure 3c Test images with their spectral activities in abdomen.

Figure 3d Test images with their spectral activities in strange
body.

http://wiki.apache.org/hadoop/HDFS

2019
Vol. 7 No. 1:316

7

British Biomedical Bulletin
ISSN 2347-5447

© Under License of Creative Commons Attribution 3.0 License

Table 1: Summary of results with DChT method.

Images
Evaluation Code book Size
Parameters 64 128 256 512

Pelvis- (11)

PSNR (dB) 20.85 24.38 33.35 Inf.
MSE 534.11 236.98 30.01 0
MAE 7.78 4.94 1.76 0

CR (%) 99.9 99.87 99.82 99.78
UIQ 0.951 0.978 0.998 1

MSSIM 0.865 0.915 0.976 1
CT (s) 175.81 172.57 175.44 201.64
DT (s) 12055.1 10943.55 12654.48 12319.96

Head-(12)

PSNR (dB) 23.14 26.82 37.05 Inf.
MSE 315.16 135.03 12.81 0
MAE 5.98 3.67 1.19 0

CR (%) 99.91 99.87 99.82 99.78
UIQ 0.977 0.992 0.999 1

MSSIM 0.879 0.931 0.983 1
CT (s) 173.69 169.75 178.62 198.76
DT (s) 10746.27 11016.27 10705.48 11614.41

Abdomen-(13)

PSNR (dB) 21.11 24.91 33.28 Inf.
MSE 502.9 209.49 30.54 0
MAE 7.3 4.47 1.8 0

CR (%) 99.89 99.87 99.82 99.78
UIQ 0.961 0.991 0.998 1

MSSIM 0.859 0.924 0.983 1
CT (s) 160.2 168.71 218.65 276.15
DT (s) 10301.2 10564.08 11187.09 11279.2

Strange Body-
(14)

PSNR (dB) 23.34 26.76 34.37 Inf.
MSE 301.13 137.1 23.73 0
MAE 4.04 2.51 0.86 0

CR (%) 99.9 99.87 99.82 99.78
UIQ 0.72 0.791 0.844 1

MSSIM 0.772 0.85 0.958 1
CT (s) 172.71 165.91 176.24 216.17
DT (s) 12868.87 12390.25 12902.74 13011.2

Figure 4a Head images compressed and decompressed using DChT.

Table 2: Summary of results with DWhT method.

Images
Evaluation Codebook Size
Parameters 64 128 256 512

Pelvis-(11)

PSNR (dB) 21.05 24.28 31.15 Inf.
MSE 510.11 242.54 49.88 0
MAE 7.7 5.08 2.42 0

CR (%) 99.89 99.86 99.82 99.78
UIQ 0.954 0.98 0.997 1

MSSIM 0.869 0.92 0.971 1
CT (s) 6.93 9.89 16.06 34.27
DT (s) 11.43 14.99 22.22 43.57

Head-(12)

PSNR (dB) 23.06 26.33 33.52 Inf.
MSE 321 151.29 28.89 0
MAE 6.07 4.02 1.76 0

CR (%) 99.9 99.86 99.82 99.78
UIQ 0.976 0.991 0.999 1

MSSIM 0.877 0.929 0.979 1
CT (s) 7.08 9.54 16.72 36.52
DT (s) 11.97 14.38 22.93 46.15

 Abdomen-(13)

PSNR (dB) 21.11 24.6 30.93 Inf.
MSE 502.9 225.3 52.45 0
MAE 7.3 4.69 2.36 0

CR (%) 99.89 99.86 99.82 99.78
UIQ 0.961 0.987 0.998 1

MSSIM 0.859 0.919 0.971 1
CT (s) 7.04 9.78 16.71 35.48
DT (s) 11.48 14.77 22.53 44.58

Strange Body-(14)

PSNR (dB) 23.4 26.03 31.8 52.06
MSE 297.6 162.17 42.95 0.4
MAE 3.79 2.55 1.79 0.02

CR (%) 99.89 99.85 99.82 99.78
UIQ 0.723 0.762 0.827 0.999

MSSIM 0.777 0.831 0.931 0.999
CT (s) 7.62 11.16 15.35 72.45
DT (s) 12.24 16.26 21.18 81.48

2019
Vol. 7 No. 1:316

8 This article is available from: http://www.imedpub.com/british-biomedical-bulletin/

British Biomedical Bulletin
ISSN 2347-5447

images decompressed using DChT and DWhT, respectively. From
these images, we confirm that the quantization step enormously
influences the compression system, especially as regards the
choice of codebook size. For the same simulation with the same
configurations, the settings such as PNSR, MSE and CR may be
slightly different. This is because we assumed in our program
during the learning phase, that if no vector is close to the code
word, we use a random vector by default.

Regarding the Figures 4 (a,b) and 5 (a,b), we can say using a
subjective evaluation as Human Vision System (HVS), there is
no difference between original and decompressed image for
a codebook size equal to 256. For this codebook size, we get

Figure 4b Abdomen images compressed and decompressed using DChT.

Figure 5a Head images compressed and decompressed using DWhT.

an average of PNSR equal to 32, MSSIM equal to 0.950 and, it
becomes difficult to see the difference between these images.

Figures 6 (a-d) and 7 (a-d) show the MSSIM and MAE according
to the codebook size, respectively. On the Figures 6 (a-d) and 7
(a-d), we see that the compression using the DChT outperform
the compression using the DWhT. Regarding the Tables 1 and
2, the compression and decompression time for DChT are high
than the compression and decompression time for DWhT. The
time is an important evaluation characteristic of an algorithm.
So we can notice that the compression performs with DWhT
and our training method (K-means and split method) for vector
quantization give the satisfactory compromise between all

2019
Vol. 7 No. 1:316

9

British Biomedical Bulletin
ISSN 2347-5447

© Under License of Creative Commons Attribution 3.0 License

Figure 5b Abdomen images compressed and decompressed using DWhT.

Figure 6a Pelvis MSSIM according to codebook size of medical
images test.

Figure 6b Head MSSIM according to codebook size of medical
images test.

Figure 6c Abdomen MSSIM according to codebook size of medical
images test.

Figure 6d Strange Body MSSIM according to codebook size of
medical images test.

evaluation parameters and quality of the reconstructed image.
We tested our algorithm on four medical images. Now we give
a big data architecture based on Spark framework to compress
many images at the same time. Spark framework is increasingly
used finally to implement architectures enable to perform these
tasks. This because it facilitates the implementation of algorithms
with its embedded libraries. In the architecture of Figure 8, the

images that are input are already diagnosed, validated and
stored in small databases (DB) dedicated to each kind of image.
As an example case, we took the database containing the images
"Pelvis" patients. This DB is finally divided into several clusters to
apply a parallel programming. The Map function allows searching
for images having the same spectral properties and, to group
them together using the Reduce by Key function. The Reduce by

2019
Vol. 7 No. 1:316

10 This article is available from: http://www.imedpub.com/british-biomedical-bulletin/

British Biomedical Bulletin
ISSN 2347-5447

Figure 8 defines all the sequence of the compression process of
our images in the Spark. Thus, we need to design our algorithms
and functions to use. Note here that our developed architecture
in Figure 8 can be adapted to stand out all the Spark architecture
of the workflow presented in [3].

Figure 7a Pelvis MAE according to codebook size of medical
images test.

Figure 7b Head MAE according to codebook size of medical
images test.

Figure 7c Abdomen MAE according to codebook size of medical
images test.

Figure 7d Strange body MAE according to codebook size of
medical images test.

Figure 8 Spark map reduce pipeline for biomedical image compression.

Key function keeps images that have the same spectral property
together. Then, the compression is applied to these images with
a codebook length adapted to each category of image group. At
the end of this architecture, we have the Reduce function which
prepares the compressed data and saves the compressed index
and the dictionary in the clusters. Hence a DB intended for the
backup of the compressed image data.

2019
Vol. 7 No. 1:316

11

British Biomedical Bulletin
ISSN 2347-5447

© Under License of Creative Commons Attribution 3.0 License

Figure 9a Lena images for comparison. Figure 9b Peppers images for comparison.

Discussion
This paper relies on a comparison study, and it was difficult for
us to compare our algorithm with a different algorithm found
in the literature. Indeed, to perform an optimal comparison, we
have to find in the literature, algorithms implemented on the
same images as us. However, this is very difficult. To overcome
this drawback, we finally implemented our algorithm on the
same images as seen in the literature to conclude. Thus, we have
seen in literature many works that use vector quantization with a
training method to train an optimal codebook. Table 3 presents
the comparison between our proposed algorithm and algorithms
proposed in [16-18].

In Table 3, we compare our compression algorithm with these

Images Lena Peppers Baboon Goldhill
Compression

Methods
 Codebook

Size
PSNR (dB) CT (s) PSNR

(dB)
CT (s) PSNR (dB) CT (s) PSNR

(dB)
CT (s)

Our Method
(K-Means+Splitting

Method)

DWhT 64 22.3 12.3 21.3 14.19 21.2 12.39 23.7 12.21
128 26.1 17.67 24.7 18.87 23.3 16.2 27.4 20.58
256 31.9 42.84 30.3 24.33 26.7 21.48 31 21.21
512 Inf. 51.42 Inf. 48.81 Inf. 39.93 Inf. 33.93

DChT 64 23.1 157.62 22.4 194.79 22.1 209.61 25.4 153.75
128 27.3 201.33 25.6 221.07 24.9 246.48 29.8 199.26
256 33.2 209.43 32.8 235.65 28.5 255.84 33.7 214.65
512 Inf. 232.32 Inf. 243.21 Inf. 296.34 Inf. 219.51

Horng et al [18] FF-LBG 64 26.9 56.82 27.1 53.55 20.8 54.87 27.3 56.15
128 27.8 121.34 27.9 117.54 21.7 111.87 28.2 125.36
256 28.6 234.65 28.4 216.52 22.1 228.79 28.8 239.94
512 29.3 531.98 29.3 548.34 22.8 492.67 29.6 572.93

Chiranjeevi et al [16] CS-LBG 64 26.4 1429.49 28.5 1531.71 21.8 1507.09 27.4 1907.09
128 27.9 1609.65 30.2 1876.92 22.7 2195.83 28.2 1457.21
256 28.8 1597.38 30.8 1707.31 23.2 2006.82 29.3 2932.64
512 29.3 2638.43 32 2862.14 23.7 3544.22 30.9 2776.04

Chiranjeevi et al [17] BA-LBG 64 26.5 320.12 28.8 315.6 21.8 395.51 27.4 394.38
128 28.1 515.17 30.2 527.3 22.6 836.09 28.5 419.51
256 28.8 665.04 30.7 567.21 23.1 567.64 29.4 974.36
512 29.5 1342.51 31.8 1112.21 23.8 2458.56 30.6 1960.1

Table 3: Algorithm by PSNR and Computation time.

three previously cited works according to PSNR and computation
time (compression time+decompression time). Figure 9 (a-d)
shows the used images for this comparison. Table 3 Performance
comparison (PSNR and CT) between the introduced methods
and the Horng [18], Chiranjeevi et al. [17] and Chiranjeevi et al.
methods.

In Table 3, we observe the variation of PSNR and computation
time according to codebook size (64, 128, 256, and 512). We
notice that, when the codebook size equal to 64, the PSNR of
our method is less than FF-LBG, CS-LBG and BA-LBG methods.
However, our methods (DWhT and DChT) achieve with the
best computation time (average equal to 4.10 seconds). When
the codebook size increase, the introduced method gives good
parameters. For example, for codebook size equal to 256, we

2019
Vol. 7 No. 1:316

12 This article is available from: http://www.imedpub.com/british-biomedical-bulletin/

British Biomedical Bulletin
ISSN 2347-5447

lesser PSNR and bad reconstructed image (this only for codebook
size equal to 64). The average computation time of both methods
is around 40 seconds faster than the FF-LBG, CS-LBG and BA-LBG
methods.

Figure 10 (a-c) shows us a better comparison using a bar chart of
our methods and FF-LBG, CS-LBG and BA-LBG methods in a term
of PSNR with a codebook size equal to 64, 128 and 256. We haven’t
made a bar chart with a codebook size equal to 512 because
using both methods the PSNR equal to infinity. We compared our
compression methods with FF-LBG, CS-LBG and BA-LBG methods
from [16-18]. Where in this three works, the authors used the
Firefly algorithm, Cuckoo search algorithm and Bat algorithm
respectively to optimize the codebook for vector quantization to
improve the quality of the reconstructed image and computation
time. We noticed that for a codebook size equal to 64 or 128,
our methods (DWhT and DChT) gives almost the same evaluation
parameters with these three methods. However, when the
codebook size is 256, our compression methods outperform
compression methods presented in [16-18]. To perform all these
comparisons, we have applied our compression algorithms on
the same images used in these works. The computation time
gives us an addition to the effectiveness of our method, which is
tiny, compared to the three other methods.

Mata et al. introduced many methods for image compression
based on K-means and other optimization methods for vector
quantization. We compare here our compression method with
the two best compression method introduced by in [13]. Fuzzy
K-means Family 2 with Equal-Average Nearest Neighbor Search
(FKM2-ENNS) and Modified Fuzzy K-means Family 2 with Partial
Distortion (MFKM2-PDS). The comparison is based on two

see that our method outperforms FF-LBG, CS-LBG and BA-
LBG methods in a term of PSNR and computation time. For a
codebook size equal to 512, the PSNR of images is infinite with
both methods. This proves that compression is achieved with no
loss of information and show the efficiency of our both methods.
From the observations of Table 3, computational time of both
methods is very less compared to all other algorithms but has

Figure 9c Baboon images for comparison.

Figure 9d Goldhill images for comparison.

Figure 10a Comparison between DWhT, DChT, FF-LBG, CS-LBG, BA-
LBG algorithms based on PNSR with codebook size 64.

Figure 10b Comparison between DWhT, DChT, FF-LBG, CS-LBG, BA-
LBG algorithms based on PNSR with codebook size 128.

Figure 10c Comparison between DWhT, DChT, FF-LBG, CS-LBG, BA-
LBG algorithms based on PNSR with codebook size 256.

2019
Vol. 7 No. 1:316

13

British Biomedical Bulletin
ISSN 2347-5447

© Under License of Creative Commons Attribution 3.0 License

images, Lena and Goldhill using two evaluation parameters,
PSNR and SSIM. Table 4 shows a summary of obtained results
for this comparison and Figures 11 (a,b) and 12 (a,b) the
graphical representations. Regarding Table 4, Figures 11 (a,b)
and 12 (a,b), we notice that when the codebook size equals to
64 the Mata Method outperforms ours. This explained because
not all the clusters got by generating the codebook are yet
equiprobably. However, when the codebook size increases, there
is equiprobability between the clusters and therefore our method
outperforms that of Mata.

Conclusion
Throughout this paper, we tried to show the importance

to build a satisfactory compression scheme to compress
biomedical images for big data architecture. We have shown
our overall results by comparing performance parameters for
the compression algorithms. Our Spark architecture shows us
how we can implement the introduced algorithm and compress
biomedical images. This architecture is more complete, easier,
and adaptable in all the steps as compared with those proposed
in the literature. We based the work on a MATLAB environment
to simulate our compression algorithm. By calculating the
evaluation parameter, we notice that the PSNR, MSSIM and CR
give us the good values according to the codebook size. Regarding
the obtained parameters during the comparison, we can notice
that our method is better than literature method and give the

Figure 11a Comparison between DWhT, DChT, FKM2-ENNS, MFKM2-
PDS algorithms based on PNSR of Lena.

Figure 11b Comparison between DWhT, DChT, FKM2-ENNS, MFKM2-
PDS algorithms based on PNSR of Goldhill.

Figure 12a Comparison between DWhT, DChT, FKM2-ENNS, MFKM2-
PDS algorithms based on SSIM in Goldhill.

Figure 12b Comparison between DWhT, DChT, FKM2-ENNS, MFKM2-
PDS algorithms based on SSIM in Lena.

Table 4: Performance comparison (PSNR and CT) between the introduced methods and the Mata et al [13] methods.
Images Lena Gold hill

Compression Methods Codebook Size PSNR (dB) MSSIM PSNR (dB) MSSIM

Our Method (K-Means+Splitting Method)

DWhT
64 22.3 0.6121 23.7 0.6379

128 26.1 0.7302 27.4 0.751
256 31.9 0.8995 31 0.8692

DChT
64 23.1 0.6274 25.4 0.7114

128 27.3 0.7501 29.8 0.845
256 33.2 0.9454 33.7 0.9508

Mata et al [13]

MFKM2-PDS
64 27.85 0.8179 27.73 0.761

128 28.97 0.852 28.75 0.8048
256 30.43 0.8852 29.92 0.846

FKM2-ENNS
64 27.8 0.8177 27.7 0.7605

128 29.07 0.8518 28.69 0.8041
256 30.23 0.8842 29.8 0.845

2019
Vol. 7 No. 1:316

14 This article is available from: http://www.imedpub.com/british-biomedical-bulletin/

British Biomedical Bulletin
ISSN 2347-5447

good compromise between all the evaluation parameters. This
comparison proves the efficiency of our compression algorithms.
This work achieves with eight evaluation parameters, that are
many than those used in [13,16-18,53] where the authors used
three or four evaluation parameters. As future work, we propose
to make a data preprocessing using an unsupervised algorithm
finally to have a codebook model and use a supervised learning
to reduce codebook computation time for each image during the
vector quantization step.

Acknowledgement
The authors are very grateful to anonymous referees for their
valuable and critical comments which helped to improve this
paper. The authors are very grateful to Mrs. Talla Isabelle from
linguistic center of Yaounde, Mr. Ndi Alexander and Mrs. Feuyeu

from SUP’PTIC for improving the overall English level and mistakes
within our manuscript. The authors would like to acknowledge
Dr. Kengne Romanic from UR-MACETS and Inchtech’s Team for
their support and assistance during the conception of that work.

Funding and Competing Interests
We wish to confirm that there are no known conflicts of interest
associated with this publication and there has been no significant
financial support for this work that could have influenced its
outcome.

Ethical Approval
This article does not contain any studies with human participants
and/ or animals performed by any of the authors.

References
1 Bendre MR, Thool VR (2016) Analytics, challenges and applications in

big data environment: a survey. JMA 3: 206-239.

2 Liu F, Hernandez-Cabronero M, Sanchez V, Marcellin MW, Bilgin A
(2017) The current role of image compression standards in medical
imaging. Information 8: 131.

3 Tchagna Kouanou A, Tchiotop D, Kengne R, Djoufack TZ, Ngo Mouelas
AA, et al. (2018) An optimal big data workflow for biomedical image
analysis. IMU 11: 68-74.

4 Sayood K (2006) Introduction to data compression. Morgan
Kaufmann, San Francisco.

5 Singh SK, Kumar S (2010) Mathematical transforms and image
compression-a review. Maejo Int J Sci Technol 235-249.

6 Salomon D, Concise A (2008) Introduction to data compression.
Verlag, London.

7 Farelle P (1990) Recursive block coding for image data compression.
Verlag, New York.

8 Starosolski R (2014) New simple and efficient color space
transformations for lossless image compression. J Vis Commun
Image R 25: 1056-1063.

9 Taubman D, Marcellin M (2002) JPEG2000 Image compression
fundamentals, standards and practice. KAP.

10 Azman A, Sahib S (2011) Spectral test via discrete tchebichef
transform for randomness. Int J of Cryptology R 3: 1-14.

11 Prattipati S, Swamy M, Meher P (2015) A comparison of integer
cosine and tchebychev transforms for image compression using
variable quantization. JSIP 6: 203-216.

12 Phanprasit T, Hamamoto K, Sangworasil M, Pintavirooj C (2015)
Medical image compression using vector quantization and system
error compression. IEEJ Trans Electr Electr Eng 10: 554-566.

13 Mata E, Bandeira S, Neto PM, Lopes W, Madeiro F (2016) Accelerating
families of fuzzy k-means algorithms for vector quantization
codebook design. Sensors 16: 11.

14 Jiang H, Ma Z, Hu Y, Yang B, Zhang L (2012) Medical image
compression based on vector quantization with variable block sizes
in wavelet domain. Comput Intell Neurosci 5.

15 Lu T, Chang C (2010) A survey of vq codebook generation. JIHMSP
190-203.

16 Chiranjeevi K, Jena UR (2016) Image compression based on vector
quantization using cuckoo search optimization technique. Ain Shams
Eng J.

17 Chiranjeevi K, Jena UR (2016) Fast vector quantization using a bat
algorithm for image compression. JESTECH 19: 769-781.

18 Horng MH (2012) Vector quantization using the firefly algorithm for
image compression. Expert Syst Appl 39: 1078-1091.

19 Hosseini SM, Naghsh-Nilchi AR (2012) Medical ultrasound image
compression using contextual vector quantization. Comput Biol Med
42: 743-750.

20 Hussein Abouali A (2015) Object-based vq for image compression.
Ain Shams Eng J 6: 211-216.

21 Kesavamurthy T, Rani S, Malmurugan N (2009) Volumetric color
medical image compression for pacs implementation. IJBSCHS 14:
3-10.

22 Mukundan R (2006) Transform coding using discrete tchebichef
polynomials. VIIP 270-275.

23 Nakagaki K, Mukundan R (2007) A fast 4x4 forward discrete tchebichef
transform algorithm. IEEE Signal Processing Letters14: 684-687.

24 Ernawan F, Abu NA (2011) Efficient discrete tchebichef on spectrum
analysis of speech recognition. IJMLC 1: 1-6.

25 Xiao B, Lu G, Zhang Y, Li W, Wang G (2016) Lossless image compression
based on integer discrete tchebichef transform. Neurocomputing
214: 587-593.

26 Gegum AHR, Manimegali D, Abudhahir A, Baskar S (2016)
Evolutionary optimized discrete tchebichef moments for image
compression applications. Turk J Elec Eng Comp Sci 24: 3321-3334.

27 Abu NA, Wong SL, Rahmalan H, Sahib S (2010) Fast and efficient 4 × 4
tchebichef moment image compression. MJEE 4: 1-9.

28 Chirikjian GS, Kyatkin AB (2000) Engineering applications of
noncommutative harmonic analysis: with emphasis on rotation and
motion groups. CRC Press.

29 Karagodin MA, Polytech T, Russia U, Osokin AN (2002) Image
compression by means of walsh transform. IEEE MTT 173-175.

https://www.sciencedirect.com/science/article/pii/S0957417411010700?via%3Dihub#!
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M. A. Karagodin.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.A. N. Osokin.QT.&newsearch=true

2019
Vol. 7 No. 1:316

15

British Biomedical Bulletin
ISSN 2347-5447

© Under License of Creative Commons Attribution 3.0 License

30 Gersho A (1982) On the structure of vector quantizers. IEEE Trans Inf
Theory 28.

31 Gray RM (1984) Vector Quantization. IEEE ASSP Magazine 4-29.

32 Linde Y, Buzo A, Gray RM (1980) An algorithm for vector quantizer
design. IEEE Trans Commun 28: 84-95.

33 Le Bail E, Mitiche A (1989) Vector quantization of images using
kohonen neural network. EURASIP 6: 529-539.

34 Huang B, Wang Y (2013) Ecg compression using the context modeling
arithmetic coding with dynamic learning vector-scalar quantization.
Biomed Signal Process Control 8: 59-65.

35 Wang X, Meng J (2008) A 2-d ecg compression algorithm based on
wavelet transform and vector quantization. Dig Sig Processing 18:
179-188.

36 De A, Guo C (2015) An adaptive vector quantization approach for
image segmentation based on som network. Neurocomputing 149:
48-58.

37 Laskaris NA, Fotopoulos S (2004) A novel training scheme for
neural-network based vector quantizers and its application in image
compression. Elsevier Neurocomputing 61: 421-427.

38 Wu H, Yang S, Huang Z, He J, Wang X (2018) Type 2 diabettes mellitus
prediction model based on data mining. IMU 10: 100-107.

39 Thaina A, Tosta A, Neves LA, Do Nascimento MZ (2017) Segmentation
methods of h and e-stained histological images of lymphoma-a
review. IMU 9: 35-43.

40 Setiawan AW, Suksmono AB, Mengko TR (2009) Color medical image
vector quantization coding using k-means: retinal image. IFMBE 23:
911-914.

41 Franti P, Kaukoranta T, Nevalainen O (1997) On the splitting method for
vector quantization codebook generation. Opt Eng 36: 3043-3051.

42 Huffman D (1952) A method for the construction of minimum-
redundancy codes. IRE 40: 1098-1101.

43 Nandi U, Kumar Mandal J (2012) Windowed huffman coding with
limited distinct symbols. Procedia Techno 4: 589-594.

44 Kartheeswaran S, Dharmaraj D, Durairaj C (2017) A data-parallelism
approach for pso-ann based medical image reconstruction on a
multi-core system. IMU 8: 21-31.

45 Ayoobkhan MUA, Chikkannan E, Ramakrishnan K (2017) Lossy image
compression based on prediction error and vector quantisation.
EURASIP J Image Video Process 35: 1-13.

46 Ananthi VP, Balasubramaniam P (2016) A new image denoising
method using interval-valued intuitionistic fuzzy sets for the removal
of impulse noise. Sig Pro 121: 81-93.

47 Wang Z, Bovik CA, Sheikh HR, Simoncelli EP (2004) Image quality
assessment: from error visibility to structural similarity. IEEE TIP 13:
600-612.

48 Hore A, Ziou D (2010) Image quality metrics: psnr vs. ssim. IEEE
International Conference on Pattern Recognition 2366-2369.

49 Wang Z, Bovik CA (2002) A universal image quality index. IEEE Sig Pro
Letters 9: 81-84.

50 Mathworks. Big data with MATLAB: MATLAB, tall arrays, and spark.

51 Mathworks, predictive analytics with MATLAB: unlocking the value in
engineering and business data (2018) mathworks 11.

52 Grgic S, Grgic M, Cihlar BZ (2001) Performance analysis of image
compression using wavelets. IEEE Trans Ind Electron 48: 682-695.

53 Tchagna Kouanou A, Tchiotsop D, Tchinda R, Tchapga TC, Kengnou
TAN, et al. (2018) A machine learning algorithm for biomedical image
compression using orthogonal transforms. IJIGSP 10: 38-53.

http://www.sciencedirect.com/science/article/pii/S174680941200047X
http://www.sciencedirect.com/science/article/pii/S174680941200047X
http://www.sciencedirect.com/science/article/pii/S1051200407000395#bio001
http://www.sciencedirect.com/science/article/pii/S1051200407000395#bio002
http://www.sciencedirect.com/science/journal/10512004
https://www.sciencedirect.com/science/article/pii/S2352914817300370
https://www.sciencedirect.com/science/article/pii/S2352914817300370
https://www.sciencedirect.com/science/article/pii/S2352914817300370

