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Commentary
Game logic is a dynamic modal logic which models strategic

two person games; it contains propositional dynamic logic (PDL)
as a fragment. We propose in [1-4] an interpretation of game
logic based on stochastic effectivity functions. This comment is a
brief introduction to this logic and its interpretation, in
particular we point out why we need to introduce a new
formalism beyond stochastic Kripke models [5-10].

In his paper [11], van Benthem remarks “Game logics describe
general games through powers of players for forcing outcomes",
describing models for situations like general two person games
of the kind already discussed by Zermelo [12] like markets of
commodities, the analysis of arguments between a proponent
and a critic of a claim, termination of distributed systems and
many more. The general situation models that two players play
against each other, each player working toward a winning
situation. It is assumed that exactly one of the players will win
the game, so draws are excluded. The players are considered to
be equivalent, so that not one player dominates the other one.
In fact, we will assume that the actions of player 2 can be
modelled by the actions of player 1 simply by interchanging their
roles.

Modal logics
Let us first risk a quick glance at modal logics. Its formulas are

supposed to model changes of states (so we live in a set of
states, which are sometimes called worlds), they are given
through this grammar.� = � � �1 ∧ �2 ���   1

Here p is a primitive formula, which we assume to be given
from the outside, q ∈[0,1] ∩Q is a numerical value, and τ is a
game. Actually, modal logics are usually defined a bit more
general with general actions rather than games in mind, and
they offer negation as an operation [1]. This logic, however, is
negation free, since we do not need it here, it has, apart from
conjunction, a decorated modal operator, the decoration of
which will be omitted in the non-probabilistic case. Intuitively,
formula 〈 � 〉 �� is true in a state s if playing game τ in state s
will result in a state in which formula φ holds with a probability
greater than q. We assume that states change according to some
probability laws, which may depend on the modal operator τ. An

interpretation of this logic will have to record the effects of the
modal operators on these probabilities.

Given a state and a game, each player has in this state certain
possibilities to force an outcome when playing this game, i.e., a
set of states from which the next state may be selected. We do
not give, however, policies which help the players in arriving at
decisions which next state or even which set of possible next
states to select. The mechanisms for these decisions are
assumed to be outside the realm of the game and can be found,
e.g., in stochastic dynamic programming [8].

Games
Games in turn are given by this grammar� = � �� �1 ∪ �2 �1 ∩ �2 �1; �2 �* �× (2)
With γ∈Γ, the set of atomic games. This models a two person

game, player 1 is called Angel, player 2 is referred to as Demon
Angel plays against Demon. Games can be combined in different
ways. If τ and τ′ are games, τ;τ′ is the sequential composition of τ
and τ′, so that plays , τ first, than τ′. In game τ ∪ τ′, Angel decides
whether τ or τ′ is to be played, then the chosen game is played; τ
∪ τ′ is called the angelic choice between τ and τ′. Similarly, in τ ∩
τ′ Demon decides whether τ or τ′ is to be played; accordingly, τ ∩
τ′ is the demonic choice between the games. In the game τ*,
game τ is played repeatedly, until Angel decides to stop; it is not
said in advance how many times the game is to be played,
probably even not at all, but it has to stop at some time; this is
called angelic iteration. Dually, Demon decides to stop for the
game τ×; this is called demonic iteration. Finally, the roles of
Angel and Demon are interchanged in the game τd, so all
decisions made by Demon are now being made by Angel, and
vice versa.

Let's see how to interpret a game in the absence of
probabilities. We assume the availability of a relation ���  which
indicates that player i has a strategy for forcing a set A of
outputs upon playing in state by s by s��� A. Thus ��� ⊆ S×P (S),
the latter denoting the power set of state space S. It is desirable
thats��� X and X⊆X′ together imply s��� X′for all states s. → (3)

We assume that the game is determined, i.e., that exactly one
of the players has a winning strategy. Thus A⊆S is effective for
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player 1 in state s if and only if A\S is not effective for player 2 in
that state. Consequently,

s��� A ↔ ¬(s��� S\X), → (4)

which in turn implies that we only have to cater for player 1.
We will omit the superscript from the neighbourhood relation
Rγ. In this way we associate with each game a map S→P (S) from
the set S of states to its power set P (S), for convenience also
called Rγ which in addition is upper closed, i.e., A∈Rγ(s), A⊆B
implies B∈P(S). These maps are traditionally called effectivity
functions. Clearly, a relation M⊆S×S yields such an effectivity
function M• upon setting

M•(s):={A⊆S| s′∈ A for some s′ with 〈 �, �′ 〉 ∈ �
We will return to this point later on.

Towards an interpretation
From Rγ another map R̃γ:P(S) → P(S) is obtained upon setting

R̃γ(A):={s∈S|sRγA}. Thus state s is an element of R̃γ(A) if the first
player has a strategy force the outcome A when playing γ in s.
The algebraic operations on games can be taken care of through
this family of maps, e.g., one sets recursively

R̃γ:=Rγ, if γ is atomic, i.e., if γ∈ Γ → (6)��1  ∪  �2 �     : =   ��1 � ∪ � �2 � ,   7��1;  �2 �     : = ��1   � �2 � ,     8�� * � : = �� ≥ 0��� �   9
This refers only to player 1, player 2 is accommodated through

A↔S\Rτ(S\A) by (4). The maps R̃τ serve in Parikhs's original
paper [10] as a basis for defining the semantics of game logic. It
turns out to be convenient for the present paper, however, to
use effectivity functions as maps to upper closed subsets.

Just to provide an example for this interpretation, assume
that [[φ]] is the set of all states for which formula φ holds, then[[ 〈 �1 ∪ �2 〉 ]]: = ��1 ∪ �2([[�]]) will be the set of states in
which φ holds after the angelic choice between games τ1 and τ2
has been made.

What about probabilities?
Having a look at the algebraic operations on the maps R̃γ, one

perceives that some common operations enter the model, viz.,
unions and compositions. Let us call Parikh's approach the non-
deterministic interpretation. Constructing a probabilistic
interpretation, the first attempt would be to mimic somehow
the approach given above. Alas, this does not work, since it does
not make too much sense to talk about the union of
probabilities, say, as in (7). Consequently we have to modify this
approach accordingly, guided by these considerations (with Pγ
playing the probabilistic role of Rγ):

where the non-deterministic approach uses subsets of states,
we will use subsets of probabilities on states. A∈Rγ(s) means
non-deterministically that, playing in s, the player has a strategy

to achieve a state in A. In the probabilistic transformation we
will say that A∈Pγ(s) means that A is a set of probability
measures yielding the distributions of the states upon playing γ
in s. Pγ(s) should be upper closed, in accordance with (3) for its
non-deterministic cousin. We deal with probabilities over
general spaces, which require a measurable structure
(technically, the state space S is equipped with a Boolean σ-
algebra of subsets which are called measurable. This measurable
structure induces a measurable structure on the space of all
probabilities on S; first details can be found, e.g., in [5], an in-
depth discussion in [3,1.6, 4.1.2]). Pγ should behave decently
with respect to this measurable structure.

We collect these properties and call the corresponding map P
a stochastic effectivity function for game γ. It turns out that
these functions have quite a number of interesting properties,
algebraically [2] and with respect to modelling stochastic non-
determinism [7]. In this way, stochastic effectivity functions are
used for interpreting game logics. Just to provide simple
examples for the recursive approach, consider primitive games
and angelic choice again. Recall that validity is decorated with a
threshold value in the probabilistic case.

Game γ is primitive
Thus Angel has a strategy for achieving state s in φ upon

playing primitive game γ with probability not smaller than q if all
probabilities assigning a value not smaller than q to [[φ]] are
feasible for Pγ(s). This translates to� ∈ [[ 〈 � 〉 ��]] � �([[�]]) ≥ � ∈ ��(�)
Angelic choice

We combine the probabilities for 〈 �1 ∪ �2 〉 �� from their
constitutent parts, partitioning the probabilities accordingly,
hence:� ∈ [[ 〈 �1 ∪ �2 〉 ��]] ∀�1,�2 ∈ � ≥ 0,  �1 + �2 ≤ �:� ∈[[ 〈 �1 〉 �1�]]^� ∈ [[ 〈 �2 〉 �2�]]
The other cases are delt with similarly

We have among others to cater for Demon, and we have to
take care of the composition (8) as well as the in_nite iteration
(9) of games. The latter part is technically quite involved, so the
reader is referred to [4,5].

Special case: Kripke Models: Let us first note that Kripke
models that are usually used for stochastically interpreting
modal logics [3,6] are a special case. In a Kripke model, we
assign for each action to each state a distribution over the set of
states, indicating the probabilities for a state change after the
action in that state. Using the construction indicated in Equ. (5),
it can be shown that a Kripke model induces a family of
stochastic effectivity functions which may be used for
interpreting a game model.

This raises the question whether the extension to stochastic
effectivity functions is really necessary. But it is: Kripke models
are distributive, which means that

(τ1∪τ2); τ≡τ1; τ∪τ2; τ,
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≡ indicating equality for each validity set. A little reflection
shows, however, that this should not be the case in general.
General stochastic effectivity functions do not observe that
property, which means that the generalization pays off.

Special case: PDL: An important class of games is given by
programs, which can be perceived as those games that are being
played with one player only, with a similar informal semantic
understanding. Programs are given by this grammar

τ::=π|τ ∪ τ′ τ|τ; τ′|τ* → (10)

with π taken from a set of primitive programs. The
corresponding logic is usually called propositional dynamic logic,
abbreviated as PDL. Thus programs can be combined through
sequential composition and through the choice operator; we
have also indefinite iteration of programs.

PDL is usually interpreted probabilistically through stochastic
Kripke models [9]. It can luckily be shown that the Kripke
interpretation coincides with the interpretation through the
effectivity functions constructed above.

Conclusion
The stochastic interpretation of game logics requires adding

stochastic electivity functions to the traditional tool kit. This
extension is sketched here. Further work will include an
algebraic study going beyond the work already done in [2],
focussing in particular on monadic aspects. One would like to
understand better, for example, the relationship of these
functions to the Giry monad.
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