Biochemistry & Molecular Biology Journal Open Access

  • ISSN: 2471-8084
  • Journal h-index: 12
  • Journal CiteScore: 2.55
  • Journal Impact Factor: 1.74
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Reach us +32 25889658

Abstract

Identification and Mining of Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) Degradation Bacteria through Molecular Techniques

Fahad A Al-Dhabaan

Biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) explosives in soil consider a promising mechanism for these excessive applied compounds. One of most sophisticated challenges to identified bacterial explosive degrading is understands enzymatic and metabolic fundamentals of RDX degradation. RDX-contaminated soils were collected from four explosives contaminated sites at Riyadh province, Saudi Arabia. 16S rRNA was amplified through specific bacterial genes, phylogenetic tree was constructed. Among thirty eight clones which successfully sequence, Proteobacterium, Burkholderia and Rhodococcus were the major dominant identified genera in four location libraries with dedicated activity for RDX biodegradation.  XplA and XplB (RDX degrading genes) were amplified and detected as molecular marker for evaluating RDX biodegradation from each four location isolates. Furthermore, XplA and XplB genes expression comparisons of bacterial isolates from varied locations indicated superiority of bacterial isolates from first location for XplA and XplB genes expression level. Meanwhile, second, third and fourth bacterial isolates were arranged discerningly.