Improved SWIR photo-detection in the context of sub-wavelength structuration

The extreme light confinement provided by sub-wavelength metal-dielectric structures pushes towards revisiting the design rules of the photo-detectors. Furthermore, introducing absorbing layers in optical nano-resonators demands a dedicated electromagnetic design. Developing together semiconducting heterostructures and optical nano-antennas opens the way for performance improvements and new functionalities, introducing very promising features such as ultra-thin absorbing layers and device area much smaller than its optical cross-section. High responsivity, high-speed behavior, and carved optical response are among the expected properties of this new generation of photo-detectors. In this talk, I present a GMR InGaAs photo-detector dedicated for FPA applications as an illustration of this global design. I discuss the cross-linked properties of the optical and semiconductor structures. Experimental results show at $\lambda=1.55 \, \mu\text{m}$ an EQE of 75% and a specific detectivity of $10^{13} \, \text{cm}\sqrt{\text{Hz.W}}^{-1}$.

Biography
Jean-Luc Pelouard is a French Physicist and Researcher. His achievements include research of feasibility of InP-based heterojunction bipolar transistors and development of first InAPGaAs/InGaAs heterojunction bipolar transistor.

jean-luc.pelouard@c2n.upsaclay.fr