Two routes comparison for synthesis 5-aminopyrazole derivative

Radwan A. Alnajjar* and Abdallah H. Gheath

Department of Chemistry, University of Benghazi, Benghazi, Libya

ABSTRACT

Attempting to synthesis 5-aminopyrazole derivatives by two routs carried in same condition, but in reverse sequence in reagent addition, this lead to completely different products, to identify the formed product NMR, IR and Mass spectroscopy techniques used.

Keyword: 5-aminopyrazole, malononitrile dimer, donor-acceptor dyes, push-pull dyes.

INTRODUCTION

Pyrazoles are well known compounds for having pharmacological effects on human and used for drug preparation, also as potent insecticides and herbicides, and as antitumor, anti-inflammatory, antimicrobial and antipsychotic agents.

The synthesis of 5-amino-3-(cyanomethyl)-1H-pyrazole-4-carbonitrile (II) was reported, and the procures for this compound was malononitrile dimer (I) and hydrazine hydrate. On the other hand reaction of malononitrile dimer with aromatic aldehyde had been reported to give 2-amino-4-arylbuta-1,3-diene-1,1,3-tricarbonitrile (III).
Our interest was to prove that reaction of malononitrile dimer first with hydrazine followed by the aldehyde or with aldehyde followed by hydrazine would give the same result.

MATERIALS AND METHODS

1H-NMR spectra were measured in hexadeuterodimethylsulfoxid (DMSO-d_6), deuterochloroform (CDCl$_3$), hexadeuteracetond(CD$_2$COCD$_3$) and heptadeuterodimethylformamidae ((CD$_3$)$_2$NCDO) solution, on Bruker DPX 300 & 400 MHz NMR and jeol-ECA500 Japan 500MHz with chemical shift (δ) expressed in ppm down field from tetramethylsilane as an internal stander (TMS $\delta=0$). The multiplicity of the signal is as follow: s (Singlet), d (Doublet).

13C-NMR were measured on Bruker DPX 75&100 MHz NMR and jeol-ECA500 Japan 125MHz; internal reference TMS $\delta=0$.

FT-IR measurements were measured using a Perkin Elmer 2000 FT-IR system. The positions of absorptions have been expressed in wave number units (cm$^{-1}$).

Mass spectroscopy was done using direct inlet unit (DI-50) of shimadzu GC/MS – QP5050A. Ionization mode: EI. Ionization voltage: 70 ev.

Melting points (m.p) of the synthesized compounds were determined in capillary tubes using Stuart scientific apparatus and are uncorrected.

Analytical glass and aluminum plates were used with Kieselgel G or Kieselgel GF 254 (Merck). The plates were run in the following systems: (Ethyl acetate) and (Chloroform – methanol) different ratios, and examined under ultraviolet light Model UV GL-58/50 Hz Lampe.

Synthesis of malononitrile dimer [I].
The synthesis of malononitrile dimer was carried out using Mittelbach4 methods.

Yield: 2.7g (82%); mp.: 169-172°C (water); IR: 3345, 3199, 2952, 2914, 2263, 2226, 2210, 1658,1551 cm$^{-1}$; 1H NMR (300MHz, DMSO-d_6): δ: 3.82 (2H, s, CH$_2$); 8.9 & 9.0 (2H, s, exchangeable, NH$_2$); 13C NMR (75MHz, DMSO-d_6): δ: 22.18(1C), 49.92(1C), 114.21(1C), 114.57(1C), 115.33(1C), 164.70(1C); MS(EI): m/z= 132.10 , 92.8, 65.20.

Synthesis of 5-amino-3-(cyanomethyl)-1H-pyrazole-4-carbonitrile [II].
To a solution of (2.64g, 0.02 mol) of 2-aminoprop-1-ene-1,1,3-tricarbonitrile(I) in 20 ml. of boiling ethanol was added (1.1 g, 0.022 mol) 85% hydrazine hydrate at such a rate that the reaction mixture continued to boil without external heating. The strongly exothermic reaction was accompanied by a vigorous evolution of ammonia. After addition of the hydrazine hydrate was completed, the reaction mixture was heated under reflux for an additional 15 mins and then allowed to cool slowly to room temperature. It was then chilled, filtered and recrystallized from...
Radwan A. Alnajjar and Abdallah H. Gheath

glacial acetic acid to give compound (II). Yield: (71%); mp.: 197-199°C.; IR: 3397, 3355, 3199, 2268, 2216, 1686, 1657, 1598, 1536 cm\(^{-1}\); H\(^1\) NMR (300MHz, Acetone-d\(_6\)): δ: 3.9 (2H, s, CH\(_2\)); 6.09/2H, s, D\(_2\)O exchangeable, NH\(_2\)); 11.35(1H, s, D\(_2\)O exchangeable NH).; C\(^{13}\) NMR (75MHz, Acetone-d\(_6\)): δ: 16.08(1C), 73.08(1C), 113.07(1C), 115.82(1C), 143.70(1C), 154.03(1C); MS (EI): m/z = 147.20, 91.15, 63.80, 66.

Synthesis of 4-aryl-2-aminobut-1,3-diene-1,1,3-tricarbonitrile[IIIa-b]

General procedure: 2-aminoprop-1-ene-1,1,3-tricarbonitrile and substituted benzaldehyde were refluxed in 10 ml methanol with few drops of selected base. On cooling to room temperature the product was precipitated, filtered and washed with cold methanol.

<table>
<thead>
<tr>
<th>No.</th>
<th>Ar base</th>
<th>Mole ratio</th>
<th>R. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(IIIa)</td>
<td>4-methoxyphenyl piperidine</td>
<td>1:1</td>
<td>90 mins.</td>
</tr>
<tr>
<td>(IIIb)</td>
<td>4-N,N-dimethylaminophenyl piperidinium acetate</td>
<td>1:2</td>
<td>60 mins.</td>
</tr>
</tbody>
</table>

2-amino-4-(4-methoxyphenyl)buta-1,3-diene-1,1,3-tricarbonitrile (IIIa): Yield: (34%); mp.: 198-200°C (methanol); IR: 3342, 3217, 2231, 2216, 1679, 829 cm\(^{-1}\); H\(^1\) NMR (300MHz, DMSO-d\(_6\)): δ: 3.84 (3H, s, CH\(_3\)); 7.14&7.17 (2H, d, Ar-H); 7.92(1H, s, CH); 7.96&7.99(2H, d, Ar-H); 8.96&9.02 (2H, s, D\(_2\)O exchangeable, NH\(_2\)).; C\(^{13}\) NMR (75MHz, DMSO-d\(_6\)): δ: 49.45(1C), 55.68(1C), 98.26(1C), 114.79(1C), 114.94(1C), 115.38(1C), 115.58(2C), 124.10(1C), 132.59(2C), 152.73(1C), 163.09(1C), 165.90(1C); MS (EI): m/z = 250.75, 224.75, 66.15.

Synthesis of 5-amino-3-(1-cyano-2-(4-aryl)vinyl)-1H-pyrazole-4-carbonitrile

General procedure: A mixture of 5-amino-3-cyanomethyl-1H-pyrazole-4-carbonitrile (10 mmol) and 4-substituted benzaldehyde (10mmol) were refluxed in 50 ml methanol and few drops of selected base for 3-4hurs. On cooling to room temperature a precipitate was formed, filtered and washed with cold methanol.

<table>
<thead>
<tr>
<th>No.</th>
<th>Ar</th>
<th>Mole ratio</th>
<th>R. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(IVA)</td>
<td>4-methoxyphenyl</td>
<td>1:1</td>
<td>4 hrs.</td>
</tr>
<tr>
<td>(IVb)</td>
<td>4-N,N-dimethylaminophenyl</td>
<td>1:2</td>
<td>6hrs.</td>
</tr>
</tbody>
</table>

5-amino-3-(1-cyano-2-(4-(dimethylamino)phenyl)vinyl)-1H-pyrazole-4-carbonitrile (IVb)
Yield: (30%); mp.: 267-269°C Dec.; IR: 3332, 3246, 3198, 2210, 2114, 1645 cm\(^{-1}\); H\(^1\) NMR(300MHz, DMSO-d\(_6\)): δ: 3.02 (6H, s, CH\(_3\)); 6.56(2H, s, D\(_2\)O exchangeable NH\(_2\)), 6.79 &6.82(2H, d, Ar-H); 7.67(1H, s, CH); 7.86&7.89(2H, d, Ar-H); 8.74 (2H, s, D\(_2\)O exchangeable, NH\(_2\)).; C\(^{13}\) NMR(100MHz, DMSO-d\(_6\)): δ: 47.23(2C), 95.95(1C), 111.60(2C), 115.41(1C), 115.95(1C), 116.56(1C), 118.42(2C), 120.61(1C), 133.10(2C), 152.73(1C), 153.37(1C), 166.79(1C); MS (EI): m/z = 263.4, 248, 219.

5-amino-3-(1-cyano-2-(4-methoxyphenyl)vinyl)-1H-pyrazole-4-carbonitrile
Yield: (34%); mp.: 231–233°C Dec.; IR: 3449, 3333, 3198, 2222, 2210, 1646, 1599, 1566, 1515, 829 cm\(^{-1}\); H\(^1\) NMR(300MHz, DMSO-d\(_6\)): δ: 3.84 (3H, s, CH\(_3\)); 6.62(2H, s, D\(_2\)O exchangeable NH\(_2\)), 6.79 &8.2(2H, d, Ar-H); 7.67(1H, s, CH\(_2\)) 7.75 & 7.77(2H, d, Ar-H), 12.20(1H, s, D\(_2\)O exchangeable NH\(_2\)).; C\(^{13}\) NMR(100MHz, DMSO-d\(_6\)): δ: 55.53(1C), 100.59(1C), 114.71(2C), 114.99(1C), 116.52(1C), 125.37(1C), 131.25(2C), 139.97(1C), 142.54(1C), 145.81(1C), 154.88(1C), 161.51(1C); MS (EI): m/z = 265.15, 195, 139, 51.

Synthesis of 1,2-bis(4-x-benzylidene)hydrazine[V\(_a\)-b]
General procedure: a mixture of 2-amino-4-arylbuta-1,3-diene-1,1,3-tricarbonitrile (10 mmol) and hydrazine hydrate (10mmol) in ethanol (20 ml) was refluxed. The formed solid was collected by filtration and washed with ethanol; the product was pure enough for analysis.

Pelagia Research Library
1,2-bis(4-methoxybenzylidene)hydrazine\[V_a\]

Yield : (74%); mp. : 168-170\(^\circ\)C.; IR: 2968, 2927, 1615, 1602 cm\(^{-1}\).; H\(^1\)NMR (400 MHz, DMSO-\(d_6\)): \(\delta\): 3.82 (6H, s, CH\(_3\)); 7.03& 7.06 (4H, d, CH\(_2\)); 7.82& 7.79 (4H, d, CH\(_2\)); 8.62 (2H, s, CH). C\(^13\)NMR (100MHz, DMSO-\(d_6\)): \(\delta\): 55.39 (2C), 114.42 (4C), 126.58 (2C), 130.54 (4C), 160.59 (2C), 161.69 (2C).; MS (EI): m/z = 278.40, 240.90, 160.90, 75.90, 65.10, 51.10 (100).

4,4’-(hydrazine-1,2-diylidenebis(methanylylidene))bis(N,N-dimethylaniline) \[V_b\]

Yield: (78%); mp. : 214-216\(^\circ\)C.; IR: 2911, 1602, 1555 cm\(^{-1}\).; H\(^1\)NMR (400 MHz, DMSO-\(d_6\)): \(\delta\): 2.97 (12H, s, CH\(_3\)); 6.73& 6.76 (4H, d, Ar-H), 7.61& 7.64 (4H, d, Ar-H), 8.48 (2H, s, CH). C\(^13\)NMR (100MHz, DMSO-\(d_6\)): \(\delta\): 40.13 (4C), 111.70 (4C), 121.52 (2C), 129.52 (4C), 151.98 (2C), 159.85 (2C).; MS (EI): m/z = 294.60, 266.75, 251.40, 236.35, 131.00, 118.10

RESULTS AND DISCUSSION

The chemistry of methylene group for 5-amino-3-(cyanomethyl)-1H-pyrazole-4-carbonitrile (II) had not sufficiently studied.\(^5\) Whereas the chemistry of the same group for the malononitrile dimer had studied very well.\(^1,3,7,17\) Our interest goes to condensation of methylene group of the 5-amino-3-(cyanomethyl)-1H-pyrazole-4-carbonitrile with aldehydes, the reaction was carried in the same condition that used with malononitrile dimer to insure that the methylene reactivity are the same or not. Obviously it wasn’t the same, since the reaction time for the dimer was much less than for the 5-amino-3-(cyanomethyl)-1H-pyrazole-4-carbonitrile, the yield was also different from each other as reported in Table (I).

<table>
<thead>
<tr>
<th>No.</th>
<th>Ar</th>
<th>base</th>
<th>R. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ia)</td>
<td>4-methoxyphenyl</td>
<td>piperidine</td>
<td>3hrs</td>
</tr>
<tr>
<td>(Ib)</td>
<td>4,N,N-dimethylaminophenyl</td>
<td>piperidinium acetate</td>
<td>3hrs</td>
</tr>
</tbody>
</table>

On the other hand the chemistry of 4-aryl-2-aminobut-1,3-diene-1,1,3-tricarbonitrile (III) had been poorly discovered. Little publication on this class of compounds was published.\(^38-40\) We also noted that all previous reaction occurred at \(\delta\)-carbon. Considering the giving facts, our target was to get new pyrazole derivative from the reaction of these compounds with hydrazine hydrate, it was assumed that hydrazine attack 2-aminobut-1,3-diene-1,1,3-tricarbonitrile (III), followed by intermolecular attack of the second nitrogen of hydrazine, the first attack had occurred and the second nitrogen attacks another molecules rather than intermolecular attack leading to 1,2-dibenzylidenehydrazine derivative (\(V_{a,b}\)).
CONCLUSION

We find that the reaction of malononitrile dimer with aldehyde followed by reaction with hydrazine derivatives, was completely different from reaction of malononitrile with hydrazine hydrate first then followed by reaction with aromatic substituted aldehydes.

We observed that the aliphatic aldehyde did not give any results under the same conditions.

Acknowledgments
The authors are thankful to Cairo University and Al-Biada University for spectra provide.

REFERENCES