The Pharmacological Interference on the Ca2+/cAMP Intracellular Signalling Pathways: Advances for the Antitumoral Immunotherapy Research

Paolo Ruggero Errante, Francisco Sandro Menezes-Rodrigues, Afonso Caricati-Neto and Leandro Bueno Bergantin*

Department of Pharmacology, Laboratory of Autonomic and Cardiovascular, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil

*Corresponding author:
Leandro Bueno Bergantin

leanbio39@yahoo.com.br

Department of Pharmacology, Laboratory of Autonomic and Cardiovascular Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.

Tel: 55 11 5576-4973

Citation: Errante PR, Menezes-Rodrigues FS, Caricati-Neto A, Bergantin LB (2017) The Pharmacological Interference on the Ca2+/CAMP Intracellular Signalling Pathways: Advances for the Antitumoral Immunotherapy Research. Immunother Res. Vol. 1 No. 1:4

Cancer is considered a worldwide public health problem, with a large annual number of deaths, and treatment public spending [1]. Conventional treatments such as chemotherapy and radiotherapy have limitations since they are not selective and specific, affecting both: tumor and healthy cells [2]. In recent years, new therapies have been emerged, such as: target therapies and immunotherapy both used as monotherapy or in combination with conventional therapies [3-5].

Immunotherapy for the treatment of cancer, using monoclonal antibodies, is considered selective, such as antibodies against Vascular Endothelial Growth Factor (VEGF) [6]. This therapeutic approach has significant efficacy in the treatment of different types of tumors, but its cost and toxic effects limit its application [7]. Thus, one of the greatest challenges is the development of combined therapies capable of inducing an antitumor response, availing the control of tumor growth, angiogenesis and dissemination [8].

In the early stages of tumor development, when the tumor is less than 2 mm of diameter, the nutrition of the tumor mass is performed through the diffusion from neighboring tissues. Exceeding this size, tumor growth depends on the process of angiogenesis and the new formed blood vessels serve as routes for dissemination of the neoplasia to other places (colonization) [9]. For tumor-induced angiogenesis occurring, αvβ3 integrins play a relevant role in the physical interaction with the extracellular matrix necessary for cell adhesion, migration and positioning, in addition to inducing signs for cell survival and proliferation [10]. Integrins are adapted for the transmission of information from the extracellular medium into the cells by cytoskeleton proteins, with activation of GTPases, activation of Mitogen Activated Protein-Kinase (MAPK), alteration of intracellular levels of Ca2+ and increase of levels of substrates for activation of phospholipase C [11,12]. Activation of phospholipase C causes increased hydrolysis of membrane phospholipids, generating inositol-1-4-5-triphosphate and diacylglycerol. Inositol-1-4-5-triphosphate activates Ca2+ channels located in the membrane of the endoplasmic reticulum, releasing Ca2+ into the cytosol; and thus diacylglycerol activates the plasma membrane voltage sensitive Ca2+ channels, with passage of Ca2+ from extracellular into intracellular compartment [13]. Thus, this signaling system - with increased levels of intracellular Ca2+ - may contribute to the process of tumor growth and dissemination, exemplified by sarcoplasmic/endoplasmic reticulum calcium ATPases channels (SERCA, specifically SERCA2, SERCA3) and voltage-gated Ca2+ channels (CaV, specifically CaV1.2, CaV3.2) [14-16].

In addition, the blockade of Ca2+ channels is able to decrease vascularization in breast and kidney tumors; and the drug NNC 55-0396, a T-type Ca2+ channel inhibitor, is capable of inhibiting angiogenesis of tumor by suppression of hypoxia-inducible factor-1alpha signal transduction via both proteasome degradation, and protein synthesis pathways [17,18].

Besides Ca2+ the cyclic adenosine monophosphate (cAMP) is a nucleotide responsible for intracellular signalling transduction from different stimuli, associated with activation of protein...
kinases [19,20]. The decrease of intracellular levels of cAMP stimuli may modulate transcriptional factors, and gene activation, making cells start DNA synthesis, and entry to cell cycle [21]. In contrast, increasing intracellular levels of cAMP through the action of phosphodiesterase inhibitors (that hydrolyze cAMP) may inhibit Endothelial Extracellular Matrix (ECM) remodeling, thus suppressing PI3K/AKT signals to down-modulate Vascular Endothelial Growth Factor (VEGF) secretion and vessel formation in vitro, and stimulating the lower synthesis of VEGF and diminishing the micro vessel density in animal model of diffuse large B-cell lymphoma (DLBCL) [22,23]. Also, the association of curcumin with phosphodiesterase 2, and phosphodiesterase 4 inhibitors, inhibits the production of VEGF, angiogenesis and tumor growth [24]. Thus, the combination of anti-VEGF monoclonal antibodies with Ca²⁺ channel blockers or phosphodiesterase inhibitors, may decrease the toxic effects of antitumor immunotherapy.

References

