Specially structured flow shop scheduling with fuzzy processing time to minimize the rental cost

Deepak Gupta¹, Sameer Sharma*² and Shefali Aggarwal¹

¹Department of Mathematics, M. M. University, Mullana, Ambala, Haryana, India
²Department of Mathematics, D.A.V. College, Jalandhar City, Punjab, India

ABSTRACT

Scheduling is an enduring process where the existence of real time information frequently forces the review and modification of pre-established schedules. The real world is complex; complexity in the world generally arises from uncertainty. From this prospective, the concept of fuzzy environment is introduced in the theory of scheduling. This paper pertain to a specially structured n-jobs, 2-machines flow shop scheduling in which processing times are described by triangular fuzzy numbers. Further the average high rankings of fuzzy processing time are not random but bear a well defined relationship to one another. The present work is an attempt to develop a new heuristic algorithm, an alternative to the traditional algorithm as proposed by Johnson’s (1954) to find the optimal sequence to minimize the utilization time of machines and hence, their rental cost under specified rental policy.

Keywords: Specially structured flow shop, processing time, fuzzy schedule, average high ranking, rental policy.

INTRODUCTION

In a real world, final deadlines depend upon types of production priority of jobs / customers. For example, exports are to be completed rigidly before shipping. But in some cases slight delay is allowed. In the literature dealing with a flowshop scheduling problems, processing times and relevant data are usually assumed to be known exactly. Yet this is seldom the case in most situations. As in case of real life decision making situations, there are many vaguely formulated relations and imprecisely quantified data values in real world description since precise details are simply not available in advance. As a result, the decision making is much easier in providing approximate duration and to specify most and least possible values than to give exact and precise values. As the fuzzy approach seems much more natural, we investigate its potential in solving the flow shop problem in real-life situations. Moreover, the fuzzy approach seems a natural extension of its crisp counterpart so that we need to know how the fuzziness of processing times affects the job sequence itself. A flow shop scheduling problems has been one of the classical problems in production scheduling since Johnson [8] proposed the well known Johnson’s rule in the two and three stage flow shop scheduling problem. MacCahon and Lee [9] discussed the job sequencing with fuzzy processing time. Ishibuchi and Lee [6] addressed the formulation of fuzzy flowshop scheduling problem with fuzzy processing time. Hong and Chuang [5] developed a new triangular Johnson algorithm. Marin and Roberto [10] developed fuzzy scheduling with application to real time systems. Some of the noteworthy approaches are due to Yager [15], McCahon [9], Shukla and Chen [11], Yao and Lin [7], Singh and Gupta [12], Sanuja and Song [13], Singh, Sunita and Allawalia [14].

Gupta, D., Sharma, S. and Shashi [4] studied specially structured two stage flow shop scheduling to minimize the rental cost. In the present paper we have introduced the concept of fuzzy processing time for a specially structured two stage flowshop scheduling in which processing times are described by triangular fuzzy numbers. The proposed algorithm is more efficient and less time consuming as compared to the algorithm proposed by Johnson’s [8] to minimize the utilization time of machines and hence their rental cost for specially structured flow shop scheduling.
Practical Situation

Fuzzy set theory is applicable to problems in engineering, business, medical and related health sciences, and the natural sciences. Various practical situations occur in real life when one has got the assignments but does not have one’s own machine or does not have enough money or does not want to take risk of investing huge amount of money to purchase machine. Under such circumstances, the machine has to be taken on rent in order to complete the assignments. In his starting career, we find a medical practitioner does not buy expensive machines say X-ray machine, the Ultra Sound Machine, Rotating Triple Head Single Positron Emission Computed Tomography Scanner, Patient Monitoring Equipment, and Laboratory Equipment etc., but instead takes on rent. Rental of medical equipment is an affordable and quick solution for hospitals, nursing homes, physicians, which are presently constrained by the availability of limited funds due to the recent global economic recession. Renting enables saving working capital, gives option for having the equipment, and allows upgradation to new technology.

Fuzzy Membership Function

All information contained in a fuzzy set described by its membership function. The triangular membership functions are used to represent fuzzy processing times in our algorithm. Figure 1 shows the triangular membership function of a fuzzy set \tilde{P}, $P=(a, b, c)$. The membership value reaches the highest point at b, while a and c denote the lower bound and upper bound of the set P respectively. The membership value of the x denoted by μ, $x \in \mathbb{R}^+$, can be calculated according to the following formula.

$$
\mu(x) = \begin{cases}
0; & x \leq a \\
\frac{x-a}{b-a}; & a \leq x \leq b \\
\frac{c-x}{c-b}; & b < x < c \\
1; & x \geq c
\end{cases}
$$

$$
\text{Figure 1}
$$

1.1. Average High Ranking (A.H.R.)

To find the optimal sequence, the processing times of the jobs are calculated by using Yager’s (1981) average high ranking formula (AHR) $h(A) = \frac{3b+c-a}{3}$.

1.2. Fuzzy Arithmetic Operations

If $A_1 = (m_1, \alpha_1, \beta_1)$ and $A_2 = (m_2, \alpha_2, \beta_2)$ be the two triangular fuzzy numbers, then

$A_1 + A_2 = (m_1 + m_2, \alpha_1 + \alpha_2, \beta_1 + \beta_2)$

$A_1 - A_2 = (m_1, \alpha_1, \beta_1) - (m_2, \alpha_2, \beta_2) = (m_1 - m_2, \alpha_1 - \alpha_2, \beta_1 - \beta_2)$ if the following condition is satisfied $DP(\tilde{A_1}) \geq DP(\tilde{A_2})$, where $DP(\tilde{A_1}) = \frac{\beta_1 - m_1}{2}$ and $DP(\tilde{A_2}) = \frac{\beta_2 - m_2}{2}$. Here DP denotes difference point of a Triangular fuzzy number.

$kA_1 = k(m_1, \alpha_1, \beta_1) = (km_1, k\alpha_1, k\beta_1)$ if $k>0$.

$kA_1 = k(m_1, \alpha_1, \beta_1) = (k\beta_1, k\alpha_1, km_1)$ if $k<0$.

1987

Pelagia Research Library
Notations

S : Sequence of jobs $1, 2, 3, \ldots, n$

S_k : Sequence obtained by applying Johnson’s procedure, $k = 1, 2, 3, \ldots$

M_j : Machine j, $j = 1, 2$

M : Minimum makespan

a_{ij} : Fuzzy processing time of ith job on machine M_j, $i = 1, 2, 3, \ldots, n$; $j = 1, 2$

A_{ij} : AHR of processing time of ith job on machine M_j

$t_{ij}(S_k)$: Completion time of ith job of sequence S_k on machine M_j

$I_{ij}(S_k)$: Idle time of machine M_j for job i in the sequence S_k

$U_j(S_k)$: Utilization time for which machine M_j is required

C_i : Rental cost of ith machine.

$CT(S_i)$: Total completion time of the jobs for sequence S_i

1.3. Definition

Completion time of ith job on machine M_j is denoted by t_{ij} and is defined as:

$$t_{ij} = \max (t_{i-1,j}, t_{i,j-1}) + A_{ij},$$

where A_{ij} is AHR of processing time of ith job on jth machine.

1.4. Rental Policy (P)

The machines will be taken on rent as and when they are required and are returned as and when they are no longer required. i.e. the first machine will be taken on rent in the starting of the processing the jobs, 2nd machine will be taken on rent at time when 1st job is completed on the 1st machine.

Problem Formulation

Let some job i ($i = 1, 2, 3, \ldots, n$) is to be processed on two machines M_1 and M_2 in the order M_1M_2 such that no passing is allowed. Let a_{ij} be the processing time of ith job on jth machine in fuzzy environment. Let $A_{ij}; i=1,2,3,\ldots,n; j=1,2$ be the average high ranking (AHR) of the processing times on two machines M_1 & M_2 such that either $A_{11} \leq A_{12}$ or $A_{12} \geq A_{11}$ for all values of i. Our aim is to find the sequence $\{S_k\}$ of the jobs which minimize the rental cost of the machines.

Mathematically, the problem is stated as:

$$\text{Minimum } R(S_k) = \sum_{i=1}^{n} A_{ij} \times C_i + U_j(S_k) \times C_2$$

Subject to constraint: Rental Policy (P)

Our objective is to minimize rental cost of machines while minimizing the utilization time.

Theorem

6.1. Theorem: If $A_{ij} \leq A_{ij}$ for all i, j, $i \neq j$, then $k_1, k_2 \ldots \ldots k_n$ is a monotonically decreasing sequence, where $K_n = \sum_{i=1}^{n} A_{ij} - \sum_{i=1}^{n} A_{ij}.

Solution: Let $A_{ij} \leq A_{ij}$ for all i, j, $i \neq j$

i.e., $\max A_{ij} \leq \min A_{ij}$ for all i, j, $i \neq j$

Let $K_n = \sum_{i=1}^{n} A_{ij} - \sum_{i=1}^{n} A_{ij}$

Therefore, we have $k_1 = A_{11}$

Also $k_2 = A_{11} + A_{21} - A_{12} = A_{11} + (A_{21} - A_{12}) \leq A_{11}$ (✓ $A_{21} \leq A_{12}$)

\ldots $k_2 \leq k_2$

Now, $k_3 = A_{11} + A_{21} + A_{31} - A_{12} - A_{22}$

$= A_{11} + A_{21} - A_{12} + (A_{31} - A_{22}) = k_2 + (A_{31} - A_{22}) \leq k_2$ (✓ $A_{31} \leq A_{22}$)

Therefore, $k_3 \leq k_2 \leq k_2 \geq k_3$. Continuing in this way, we can have $K_i \geq k_2 \geq k_3 \geq \ldots \ldots \geq k_n$, a monotonically decreasing sequence.
Corollary: The total rental cost of machines is same for all the sequences.

Proof: The total elapsed time \(T(S) = \sum_{i=1}^{n} A_1 + k_i = \sum_{i=1}^{n} A_1 + A_1 = \text{Constant} \)

Therefore total elapsed time and hence total rental cost of machines is same for all the sequences.

6.2. Theorem: If \(A_i \geq A_j \) for all \(i, j, i \neq j \) then \(k_1, k_2 \ldots \ldots k_n \) is a monotonically increasing sequence, where \(K_n = \sum_{i=1}^{n} A_1 - \sum_{i=1}^{n} A_2 \).

Proof: Let \(K_n = \sum_{i=1}^{n} A_1 - \sum_{i=1}^{n} A_2 \)

Let \(A_1 \geq A_2 \) for all \(i, j, i \neq j \) i.e., \(\min A_1 \geq A_2 \) for all \(i, j \), \(i \neq j \)

Here \(k_1 = A_1 \)

\(k_2 = A_{11} + A_{21} - A_{12} = A_{11} + (A_{21} - A_{12}) \geq k_1 \) (\(\because \ A_{21} \geq A_{22} \))

Therefore, \(k_2 \geq k_1 \).

Also, \(k_3 = A_{11} + A_{31} + A_{31} - A_{12} - A_{22} = A_{11} + A_{21} - A_{12} + (A_{31} - A_{22}) \)

\(= k_2 + (A_{31} - A_{22}) \geq k_3 \) (\(\because \ A_{31} \geq A_{22} \))

Hence, \(k_3 \geq k_2 \geq k_1 \).

Continuing in this way, we can have \(k_j \leq k_2 \leq k_3 \ldots \leq k_n \) a monotonically increasing sequence.

Corollary: The total rental cost of machines is same for all the possible sequences.

Proof: The total elapsed time

\[
T(S) = \sum_{i=1}^{n} A_1 + k_n = \sum_{i=1}^{n} A_1 + \left(\sum_{i=1}^{n} A_1 - \sum_{i=1}^{n} A_2 \right) = \sum_{i=1}^{n} A_1 + \left(\sum_{i=1}^{n} A_1 - \sum_{i=1}^{n} A_2 \right) = \sum_{i=1}^{n} A_1 + A_1 = \text{Constant}
\]

It implies that under rental policy \(P \) the utilization time of machine \(M_2 \) is same. Therefore total rental cost of machines is same for all the sequences.

Algorithm

The following algorithm is proposed to minimize the rental cost for a specially structured flow shop scheduling, the processing times are under fuzzy environment and represented by triangular fuzzy number.

Step 1: Find the average high ranking (AHR) \(A_{ij} : i=1,2,3,..,n; j=1,2 \) of the processing times for all the jobs on two machines \(M_1 \) & \(M_2 \).

Step 2: Obtain the job \(J_1 \) (say) having maximum processing time on 1st machine.

Step 3: Obtain the job \(J_n \) (say) having minimum processing time on 2nd machine.

Step 4: If \(J_1 \neq J_n \) then put \(J_1 \) on the first position and \(J_n \) as the last position & go to step 7, Otherwise go to step 5.

Step 5: Take the difference of processing time of job \(J_1 \) on \(M_1 \) from job \(J_2 \) (say) having next maximum processing time on \(M_1 \). Call this difference as \(G_1 \). Also, take the difference of processing time of job \(J_n \) on \(M_2 \) from job \(J_{n-1} \) (say) having next minimum processing time on \(M_2 \). Call the difference as \(G_2 \).

Step 6: If \(G_1 \leq G_2 \) put \(J_n \) on the last position and \(J_2 \) on the first position otherwise put \(J_1 \) on 1st position and \(J_{n-1} \) on the last position.

Step 7: Arrange the remaining (n-2) jobs between 1st job & last job in any order, thereby we get the sequences \(S_1, S_2 \ldots S_r \).

Step 8: Compute the total completion time \(CT(S_k) \) \(k=1, 2, \ldots r \).

Step 9: Calculate utilization time \(U_2 \) of 2nd machine \(U_2 = CT(S_k) - A_{11}(S_k); k=1,2,\ldots r \).

Step 10: Find rental cost \(R(S_k) = \sum_{i=1}^{n} A_i(S_k) \times C_1 + U_2 \times C_2 \), where \(C_1 \) & \(C_2 \) are the rental cost per unit time of 1st & 2nd machine respectively.

Numerical Illustration

Consider 6 jobs and 2 machine problem to minimize the rental cost in which the processing times are represented by triangular fuzzy numbers. The rental costs per unit time for machines \(M_1 \) and \(M_2 \) are 6 units and 5 units respectively. The objective is to obtain an optimal sequence of job scheduling with minimum rental cost.
Table 1: The machines with fuzzy processing time

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Machine M_1</th>
<th>Machine M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>a_{i1}</td>
<td>a_{i2}</td>
</tr>
<tr>
<td>1</td>
<td>(7,8,9)</td>
<td>(6,7,8)</td>
</tr>
<tr>
<td>2</td>
<td>(12,13,14)</td>
<td>(5,6,7)</td>
</tr>
<tr>
<td>3</td>
<td>(8,10,12)</td>
<td>(4,5,6)</td>
</tr>
<tr>
<td>4</td>
<td>(10,11,12)</td>
<td>(5,6,7)</td>
</tr>
<tr>
<td>5</td>
<td>(9,10,11)</td>
<td>(5,6,8)</td>
</tr>
<tr>
<td>6</td>
<td>(8,10,12)</td>
<td>(3,4,5)</td>
</tr>
</tbody>
</table>

Solution The AHR of the processing time of the job is as follows:

Table 2: Average High Ranking of Processing time

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Machine M_1</th>
<th>Machine M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>A_{i1}</td>
<td>A_{i2}</td>
</tr>
<tr>
<td>1</td>
<td>26/3</td>
<td>23/3</td>
</tr>
<tr>
<td>2</td>
<td>41/3</td>
<td>20/3</td>
</tr>
<tr>
<td>3</td>
<td>34/3</td>
<td>17/3</td>
</tr>
<tr>
<td>4</td>
<td>35/3</td>
<td>20/3</td>
</tr>
<tr>
<td>5</td>
<td>32/3</td>
<td>21/3</td>
</tr>
<tr>
<td>6</td>
<td>34/3</td>
<td>14/3</td>
</tr>
</tbody>
</table>

Here each $A_{i1} \geq A_{i2}$ for all i. Also, $\max A_{i1} = 41/3$ which is for job 2, i.e. $J_2 = 2$. The A.H.R. or rental cost = 662.333 units.

Table 3: The In – Out table for the optimal sequence

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Machine M_1</th>
<th>Machine M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>In-Out</td>
<td>In-Out</td>
</tr>
<tr>
<td>2</td>
<td>(0,0,0)</td>
<td>(7,8,9)</td>
</tr>
<tr>
<td>1</td>
<td>(12,13,14)</td>
<td>(13,14)</td>
</tr>
<tr>
<td>3</td>
<td>(19,21,23)</td>
<td>(19,21,25)</td>
</tr>
<tr>
<td>4</td>
<td>(27,31,35)</td>
<td>(27,35,31)</td>
</tr>
<tr>
<td>5</td>
<td>(37,42,47)</td>
<td>(37,42,47)</td>
</tr>
<tr>
<td>6</td>
<td>(46,52,58)</td>
<td>(54,62,70)</td>
</tr>
</tbody>
</table>

The total elapsed time, $CT(S_1) = (57,66,75)$

Utilization time for M_2, $U_2(S_1) = (57,66,75) - (17,19,21) = (40, 47, 54)$

Therefore, total rental cost for each of sequence $R(S_k) = 6(54, 62, 70) + 5(40, 47, 54)$

= (524, 607, 690) units.

The A.H.R. or rental cost = 662.333 units.

Remarks

If we solve the above problem by Johnson’s rule [8], we get the optimal sequence as $S = 1 – 5 – 4 – 2 – 3 – 6$. The In-Out flow table for the sequence S is

Table 4: The In – Out table flow table

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Machine M_1</th>
<th>Machine M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>In-Out</td>
<td>In-Out</td>
</tr>
<tr>
<td>1</td>
<td>(0,0,0)</td>
<td>(7,8,9)</td>
</tr>
<tr>
<td>5</td>
<td>(7,8,9)</td>
<td>(16,18,20)</td>
</tr>
<tr>
<td>4</td>
<td>(16,18,20)</td>
<td>(26,29,32)</td>
</tr>
<tr>
<td>2</td>
<td>(26,29,32)</td>
<td>(38,42,46)</td>
</tr>
<tr>
<td>3</td>
<td>(38,42,46)</td>
<td>(46,52,58)</td>
</tr>
<tr>
<td>6</td>
<td>(46,52,58)</td>
<td>(54,62,70)</td>
</tr>
</tbody>
</table>

The total elapsed time, $CT(S_1) = (57,66,75)$
Utilization time for $M_2, U_2(S_1) = (57, 66, 75) - (7, 8, 9) = (50, 58, 64)
Therefore, total rental cost for each of sequence $R(S_k) = 6(54, 62, 70) + 5(50, 58, 64)
= (574, 652, 750) \text{units.}$

The A.H.R. or rental cost = 710.666 units which is much more as compared to the rental cost of the machines by proposed algorithm although the total elapsed time remains same.

CONCLUSION

The algorithm proposed in this paper for specially structured two stage flowshop scheduling problem is less time consuming and more efficient as compared to the algorithm proposed by Johnson’s (1954) to find an optimal sequence minimizing the utilization time of the machines and hence their rental cost. Due to our rental policy, the utilization time of second machine is always minimum and hence, thereby rental cost will also be minimum.

REFERENCES