Pollen morphological studies on some members of the family Nyctaginaceae in India

Debasmita Dutta Pramanick1*, Madhusudan Mondal2 and Gour Gopal Maiti3

1Botanical Survey of India, Northern Regional Centre, Dehradun, India
2Botanical Survey of India, CNH, Howrah, India
3Dept. of Botany, Kalyani University, Kalyani, India

ABSTRACT

The pollen morphology of twelve species belonging to five genera, i.e. Mirabilis L., Boerhavia L., Commicarpus Standl., Bougainvillea Comm. ex Juss. and Pisonia L. of the family Nyctaginaceae was studied by Light microscope and Scanning electron microscope. The family is eurypalynous, having pollen grains of varying shapes, sizes and aperture pattern. The pollen morphology of the taxa studied can be correlated with the varied habit of the members of the family.

Key words: Nyctaginaceae, pollen morphology, India

INTRODUCTION

The family Nyctaginaceae, commonly known as 4 o’clock family, comprises c. 27 genera and 350 species in the world, is distributed in tropical and subtropical parts of both the hemispheres [1]. In India, the family is represented by 6 genera and 14 species.

The family is taxonomically complicated in terms of its classification, differential placement and phylogeny which has drawn attention of the taxonomists since long. Accordingly the family has been classified with number of tribes, sub-tribes, genera and infra-generic taxa from time to time aiming to solve inter- and intra- familial relationship [2-8].

Pollen morphological characters, as a useful tool in better understanding of the taxonomic disputes and classification of plants, have been critically employed in several angiosperm families since decades. Pollen grains of the family Nyctaginaceae have been studied by different authors time to time [9-22].

MATERIALS AND METHODS

The present study is based on polliniferous materials procured from field collection as well as duplicate herbarium specimens deposited in different Indian herbaria. The pollen grains were prepared for light (LM) and scanning electron microscopy (SEM) by the standard acetolysis methods [23]. For light microscopy, the pollen grains were mounted in unstained glycerin jelly and observations were made by Olympus light microscope, Model CX41 with 1.3 apochromatic objectives (X 40 X / 0.65) and [X 100 X / 1.25 (oil)]; eye piece (X 10 X). For SEM studies, pollen grains were suspended in a drop of water and directly transferred with a fine pipette to a metallic stub using double-sided adhesive tape and coated with gold in a sputter chamber. The specimen stubs were then observed under the Scanning Electron Microscope (SEM – Model No. Hitachi S – 530) maintaining accelerating voltage of 25 kv. The samples were viewed, studied and finally photomicrographs were taken at different magnifications. The SEM study was carried out in Instrumentation Department of the University of Burdwan, Burdwan, West Bengal and at Central
National Herbarium, Botanical Survey of India (CAL). The characters of palynomorphs were described in terms of shape, size, aperture type, details of aperture and pattern of exine ornamentation. Standard terminologies of pollen grains were followed [9, 24].

However, due to paucity of the specimens, twelve (12) species under five (05) genera were considered for palynological study.

RESULTS AND DISCUSSION

General pollen characters of the family Nyctaginaceae:
The family Nyctaginaceae is eurypalynous. The pollen grains are spheroidal, oblate-spheroidal to oblate in shape and the size ranges from 22-210 µm diam. Apertures are varied, ranging from pantoporate, 3-colpate, 3-4-6-colpate or pantocolpate condition. The exine is thick, spinulose or reticulate and when spinulose, spines are variable in size and shape with distinct base. The sexine is usually thicker than the nexine. Details of the palynological observations of the studied taxa for the present work are given in Table 1, Plate1.
Table 1: Salient pollen morphological characters of the studied species of different genera of Nyctaginaceae

<table>
<thead>
<tr>
<th>Name of the taxa</th>
<th>Shape</th>
<th>Diam.</th>
<th>P x E</th>
<th>Exine</th>
<th>Ornamentation</th>
<th>Type</th>
<th>Aperture</th>
<th>Membrane</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirabilis jalapa L.</td>
<td>Spheroidal, oblate-spheroidal</td>
<td>125-140 µm</td>
<td>10-15 µm</td>
<td>Spinulose; spinules 0.5-1 µm high, randomly distributed</td>
<td>Pantoporate</td>
<td>18-20</td>
<td>6.3-10 µm</td>
<td>Margin ornament, membrane provided with spinulose and granulose</td>
<td>Some abnormal joint and giant pollen grains observed</td>
</tr>
<tr>
<td>Boerhavia crispa Heyne ex Hook.f.</td>
<td>Spheroidal</td>
<td>42-47 µm</td>
<td>± 4.25 µm</td>
<td>Spinulose; spines 2.5-3 µm high, apex acute</td>
<td>Pantoporate</td>
<td>± 24</td>
<td>± 6 µm</td>
<td></td>
<td>Sexine = Nexine</td>
</tr>
<tr>
<td>B. diffusa L.</td>
<td>Spheroidal</td>
<td>55-60 µm</td>
<td>5 µm</td>
<td>Spinulose; spines 2.5-3 µm high, apex acute</td>
<td>Pantoporate</td>
<td>24-28</td>
<td>3.5-4 µm</td>
<td></td>
<td>Nexine > Sexine, Sexine 2 µm, nexine 3 µm</td>
</tr>
<tr>
<td>B. erecta L.</td>
<td>Spheroidal</td>
<td>57-60 µm</td>
<td>9 µm</td>
<td>Spinulose; spines 0.5-3 µm high, apex blunt</td>
<td>Pantoporate</td>
<td>20-22</td>
<td>± 4 µm</td>
<td></td>
<td>Nexine > Sexine, Sexine 4 µm, nexine 5 µm, mixed types of spinules 0.5-3 µm</td>
</tr>
<tr>
<td>B. rubicunda Steud.</td>
<td>Spheroidal</td>
<td>±±45 µm (42.5 µm – 55 µm)</td>
<td>4.5-7 µm</td>
<td>Spinulose; spines 1.15-2.3 µm high, apex blunt</td>
<td>Pantoporate</td>
<td>18-20</td>
<td>6.3-10 µm</td>
<td></td>
<td>Spines club-shaped with blunt tip and sparsely distributed</td>
</tr>
<tr>
<td>Commicarpus chinensis (L.) Heimerl</td>
<td>Spheroidal</td>
<td>75-80 µm</td>
<td>5.5 µm</td>
<td>Spinulose</td>
<td>Pantoporate, operculate</td>
<td>24-30</td>
<td>± 5.25 µm</td>
<td>Operculate</td>
<td>Spines base tapered, apex acute, sparsely distributed. Sexine > Nexine</td>
</tr>
<tr>
<td>Commicarpus verticillatus (Poitr.) Standl.</td>
<td>Spheroidal</td>
<td>62-66 µm</td>
<td>± 5.5 µm</td>
<td>Microreticulate and spinulose</td>
<td>Pantoporate</td>
<td>22-24</td>
<td>4.5-5 µm</td>
<td>Operculate</td>
<td>Spines base tapered, apex acute, sparsely distributed</td>
</tr>
<tr>
<td>Bougainvillea glabra Choisy</td>
<td>Spheroidal</td>
<td>24-30 µm</td>
<td>3.5-5 µm</td>
<td>Reticulate; lumina 3-4.25 µm; muri 1.5-2 µm thick; homobrochate</td>
<td>Tri-colpate</td>
<td>3</td>
<td></td>
<td>Lumina provided with 4-9 free columella; lumina linear near the aperture</td>
<td></td>
</tr>
<tr>
<td>B. spectabilis Willd.</td>
<td>Spheroidal</td>
<td>35-40 µm</td>
<td>4.5 µm</td>
<td>Reticulate; heterobrochate</td>
<td>Tri-colpate</td>
<td>3</td>
<td></td>
<td>Lumina provided with free columella</td>
<td></td>
</tr>
<tr>
<td>Pisonia aculeata L.</td>
<td>Prolate-spheroidal</td>
<td>40-45 x 35-41 µm</td>
<td>3.5-4 µm</td>
<td>Microreticulate; lumina < 1 µm</td>
<td>Tri-colpate</td>
<td>3</td>
<td></td>
<td>Colpa slit like extending up to poles. Sexine = Nexine</td>
<td></td>
</tr>
<tr>
<td>P. grandis R. Br.</td>
<td>Suboblate-spheroidal</td>
<td>26-35 x 30-40 µm</td>
<td>±4 µm</td>
<td>Spinulose; spines 0.5-0.75 µm high</td>
<td>Tri-colpate</td>
<td>3</td>
<td>± 5.25 µm</td>
<td>Granululate</td>
<td>Spinules sparsely distributed, apex acute</td>
</tr>
<tr>
<td>P. umbellifera (Forst.) Seem.</td>
<td>Oblate-spheroidal</td>
<td>45-50 x 51-56 µm</td>
<td>205-3 µm</td>
<td>Spinulose; spines 0.5 µm or less</td>
<td>8-colpate - polycolpate</td>
<td>8 to many</td>
<td>4.5-5 µm</td>
<td>Colpus membrane granululate</td>
<td>Colpa 15-18 µm length. Sexine = Nexine</td>
</tr>
</tbody>
</table>
Commicarpus chinensis L.: Pollen grains spheroidal, 125-140 µm diam. (smaller ones 70-85 µm diam.), pantoporate; pores 95-112, circular, ± 5 µm diam., margin ornate, membrane provided with spinules and granules. Exine 10-15 µm thick, spinulose; spines 0.5-1 µm high, randomly distributed, punctitectate; sexine equals to nexine. Pollen dimorphism is frequently found in this species (white-pink, mixed and mixed radiated); occasional giant, dimorphic anomalous, deformed and joint grains have been observed. All these anomalous pollen grains except giant pollen grains are sterile.

Boerhavia L.

Boerhavia crispa Heyne ex Hook. f.: Pollen grains spheroidal, 42-47 µm diam.; pantoporate; pores ± 24, circular, ± 6 µm diam. Exine ± 4.25 µm thick, spinulose; spines 2.5-3.5 µm high, apex acute; sexine equals to nexine.

Boerhavia diffusa L.: Pollen grains spheroidal, 55-60 µm diam.; pantoporate; pores 24-28, circular, 3.5-4 µm diam. Exine about 5 µm thick, spinulose; spines 2.5-3 µm high, apex acute; sexine greater than sexine.

Boerhavia erecta L.: Pollen grains spheroidal, 57-60 µm diam.; pantoporate; pores 20-22, circular, ± 4 µm diam. Exine about 9 µm thick, spinulose; spines 0.5-3 µm high, apex blunt; sexine greater than sexine.

Boerhavia rubicunda Steud.: Pollen grains spheroidal, 42.5-55 µm diam.; pantoporate; pores 18-20, circular, 6.3-10 µm diam. Exine 4.5-7 µm thick, spinulose; spines club-shaped with blunt tip, sparsely distributed, 1.15-2.3 µm high.

Commicarpus L.

Commicarpus chinensis (L.) Heimerl: Pollen grains spheroidal, 75-80 µm diam., pantoporate; pore operculate, 24-30, ± 5.25 µm diam. Exine about 5.5 µm thick, micro-reticulate and spinulose; spines sparsely distributed, base tapered, apex acute; lumina < 1 µm; muri comparatively thick, ± 1 µm thick; sexine greater than nexine.

Commicarpus verticillatus (Poir.) Standl.: Pollen grains spheroidal, 62-66 µm diam., pantoporate; pore 22-24, 4.5-5 µm diam., operculate. Exine ±5.5 µm thick, micro-reticulate and spinulose; spines sparsely distributed, base tapered, apex acute; lumina ± 1 µm; muri ± 1 µm thick; sexine greater than nexine.

Bougainvillea Comm. ex Juss.

Bougainvillea glabra Choisy: Pollen grains spheroidal to oblate-spheroidal, 24-30 µm diam., 28-30 µm x 32-35 µm, 3-colpate; colpus short, tapering. Exine 3.5-5 µm thick, reticulate, homobrochate; lumina 3-4.25 µm; muri 1.5-2 µm thick; some free col lumellae observed in the lumi; lumina linear near the aperture; sexine greater than nexine.

Bougainvillea spectabilis Willd.: Pollen grains spheroidal to oblate-spheroidal, 35-40 µm diam., 37-40 µm x 46-50 µm, 3-colpate; colpus short, tapering. Exine thick, about 4.5 µm, reticulate, heterobrochate; lumina smaller around colpus; big lumina provided with free columnellae; sexine greater than nexine.

Pisonia L.

Pisonia aculeata L.: Pollen grains prolate-spheroidal, P x E = 40-45 µm x 35-41 µm, 3-colpate, colpus long slit like, extending up to poles. Exine 3.5-4 µm thick, micro-reticulate; lumina < 1 µm; muri > 1 µm; exine thicker at poles; sexine equals to nexine.

Pisonia grandis R. Br.: Pollen grains sub-oblate-spheroidal, P x E = 26-35 µm x 30-40 µm, 3-6-colpate, mostly 3-colpate. Exine 2.5-3 µm thick, spinulose; spines < 1 µm, mostly 0.5-0.75 µm, sparsely distributed, apex acute; sexine equals to nexine.

Pisonia umbellifera (Forst.) Seem.: Pollen grains oblate-spheroidal, P x E = 45-50 µm x 51-56 µm, 8-colpate to polycoplate; colpus slit like, 15-18 µm. Exine 2.5-3 µm thick, spinulose; spines ±0.5 µm, sparsely distributed; sexine equals to nexine.

CONCLUSION

Pollen morphology of the taxa of the family Nyctaginaceae, studied for the present work is extremely varied which can be correlated with the varied habit of the plants belonging to this family. It is apparent from the present observation that the herbaceous genera like Boerhavia L., Commicarpus Standl. and Mirabilis L. are characterized by spheroidal, pantoporate and spinulose pollen grains. The shrubby taxa like Bougainvillea Comm. ex Juss. are characterized by spheroidal, 3-colpate and reticulate type of pollen grains and more interestingly the woody and

Pelagia Research Library
lofty three species of *Pisonia* L. are characterized by oblate-spheroidal to prolate-spheroidal pollen grains having 3-6-polycolpate apertures, with either mono-reticulate or spinulose exine ornamentation.

These interesting characters can be correlated with other biosystematical characters like cytology, anatomy, leaf architecture, etc. for better understanding of the intra- and inter-relationship of the taxa and phylogeny of the family. It is apparent from the general pollen characters of species studied that the herbaceous members are very much related to the Chenopodiaceous and Phytolaccaceous members but the *Pisonia* L., the lofty tree species up to 100 ft height (34 m) included in the family is apparently aberrant and misfit in the family palynologically.

Acknowledgement

The first author is thankful to Dr. M. Sanjappa, former Director, Botanical Survey of India, Kolkata for providing the facilities to carry out the palynological works. One of us (DDP) is grateful to The Ministry of Environment & Forests for financial support. Grateful acknowledgement is also expressed to In-Charge of Department of Instrumentation, Burdwan University for technical helps in SEM study.

REFERENCES