Mixed symmetry states in platinum isotopes by using the proton and neutron interacting boson model (IBM-2)

Mohammed Abdul Kadhim Al-Sadi*, Mohammed A. Al Shareafi* and Abdul Ridha Hussain Subber**

*Physics Department, College of Science, Babylon University, Iraq
**Physics Department, College of Education, Basra University, Iraq

ABSTRACT

In this study the mixed symmetry states (MSS) in even mass Pt isotopes with mass interval $168 \leq A \leq 200$ have been suggested within the framework of the Proton and Neutron Interacting Boson Model (IBM-2). The model calculations predicted a satisfactory fit to the experimental energy levels. It is found that, the energy of states $(2_{3}^{+}, 2_{4}^{+}, 2_{5}^{+}, 3_{1}^{+}, 1_{1}^{+})$ were responded rapidly to the variation of Majorana parameters in some isotopes, which indicates the initial property of the mixed symmetry state (MSS). The rest of MSS properties have been applied to those states, $B(M1)$ values and $B(M1)/B(E2)$ ratio, to support those results.

Keywords: IBM-2, Pt. isotopes, mixed symmetry state, Majorana parameters, $B(M1)$

INTRODUCTION

Platinum isotopes have always attracted much attention for physicists up to now, there have already been a lot of experimental works, and abundant data are available. Accordingly, a number of theoretical investigations have been presented to study the properties of these isotopes [1-2]. The excitation energies display the characteristic parabolic pattern as a function of neutron number N, with minimal excitation energy around the $N = 104$ neutron mid-shell nucleiues [3], the intruder structure seems lost in the Pt nuclei. Focusing on the systematics of the energy spectra in the Pt nuclei, one observes a rather sudden drop in the excitation energy of the $2_{1}^{+}, 4_{2}^{+}, 6_{0}^{+}, 0_{2}^{+}$ and 2_{2}^{+} states between $N=110$ and $N=108$. This drop followed by a particularly flat behavior in excitation energy as a function of neutron number until the energy of those states start to move up again around neutron number $N=100$ [4]. The shape of Pt isotopes evolves from spherical to oblate and finally to Prolate shapes when the neutron number decreases from $N=126$ (semi-magic) to $N=104$ mid-shell [5,6], and the dynamic symmetry of Pt isotopes located within O(6) transition region.

In present theoretical work we applied fit experimental energy levels and predict the spectral properties of almost even all Pt isotopes in mass around 200. We also report the predicted excitation energy of the mixed symmetry states. The microscopic calculations have been carried out to support the existence of mixed symmetry states in this mass region.

MATERIALS AND METHODS

The Interacting Proton and Neutron Model

The interacting boson approximation (IBA) has been rather successful at describing the collective properties of several medium and heavy nuclei. In the present work we used Proton and Neutron Interacting Boson Model (IBM-2) to study the low lying collective state of even-even Pt isotopes, the Hamiltonian operator can be written as [7-8]:

$$H = \varepsilon_d(n_{dv} + n_{dr}) + \kappa(Q_{v}, Q_{r}) + V_{rr} + V_{rr} + M_{rr}$$

(1)
where ξ_{ρ} is the energy difference s and d boson n_{ρ} is the number of d bosons, where ρ correspond to π (proton) or ν (neutron) bosons, the second term denotes the quadrupole – quadrupole interaction between proton and neutron with strength κ, where the quadruple operator Q_{ρ} is define as [9].

$$Q_{\rho} = \{ d_{\rho}^{+}d_{\rho} + s_{\rho}^{+}s_{\rho} \}^{(2)} + x_{\rho}[d_{\rho}^{+}d_{\rho}]^{(2)}$$

(2)

The term V_{ss} and V_{v} which correspond to the interaction between like – boson, are sometimes included in order to improve the fit to experimental energy spectra and they are expressed as [10-11]:

$$V_{pp} = \frac{1}{2} \sum_{l=2,4} C_{l}^{2} \{ [d_{\rho}^{+}d_{\rho}]^{(l)} , [d_{\rho}^{+}d_{\rho}] \}$$

(3)

And the Majorana term $M_{\nu n}$ contains three parameters ξ_{1}, ξ_{2} and ξ_{3} can be written as;

$$M_{\nu n} = \frac{1}{2} \xi_{3} \{ [s_{\pi}^{+}d_{\pi} - d_{\pi}^{+}s_{\pi}]^{(2)} , [s_{\nu}^{+}d_{\nu} - d_{\nu}^{+}s_{\nu}]^{(2)} \} - \sum_{k=1,3} \xi_{k} \{ [d_{\rho}^{+}d_{\rho}]^{(k)} , [d_{\rho}^{+}d_{\rho}]^{(k)} \}$$

(4)

where the Majorana term plays a great role when to study the mixed symmetry states of the some excited energy level. Mixed symmetry states occur when the motions of the proton and neutrons are not in phase in the quantum state [12]. These states were created by mixture of two wave functions, one for proton and other for neutron [13]. The mixed symmetry states determined by the F- spin formalism, where the F-spin formalism is analogous to the isospin quantum number of the nucleons. Proton bosons and neutron bosons have $F = I/2$ and ν-projection, where $F_{I} = +I/2$, $-I/2$ for protons and neutrons respectively. For a system consist of N_{π} proton boson and N_{ν} neutron boson, the maximum F-spin is $F = F_{max} = (N_{\pi} + N_{\nu}) / 2$, while the mixed symmetry states characterized by decreasing F- spin value ($F = F_{max}$, $F = F_{max} - 1$, $F = F_{max} - 2$, . . . , $F_{min} = |N_{\pi} - N_{\nu}| / 2$). In the F-spin space, one can also define the creation and annihilation operators F^{+} and F^{-} by [14-15]:

$$F_{+} = s_{\pi}^{+}s_{\pi} + (d_{\pi}^{+}d_{\pi}) , F_{-} = s_{\pi}^{+}s_{\pi} + (d_{\pi}^{+}d_{\pi}) \cdot$$

(5)

The projection operator F_{z} is given by

$$F_{z} = (N_{\pi} - N_{\nu}) / 2$$

(6)

A state composed by N_{π} proton bosons and N_{ν} neutron bosons with F-spin quantum number $F = F_{max}$ can be transformed by the successive action of the F-spin raising operator F^{+} into a state that consists of proton bosons only. This state has still a total F-spin quantum number $F_{z} = F_{max}$ since the raising operator does not change the total F-spin quantum number. This new state has only proton bosons and obviously stays unchanged under a pairwise exchange of proton and neutron labels. Therefore, IBM-2 states with $F = F_{max}$ are called Full Symmetry States (FSS). These states correspond actually to the IBM-1 states which are all symmetric. All others states with F-spin quantum numbers $F < F_{max}$ contain pairs (at least one) of proton and neutron bosons that are anti-symmetric under a pairwise exchange of protons and neutrons labels. They are called Mixed-Symmetry States (MSS) [16]. The general F-spin selection rule is $\Delta F = 0 \pm 1$. Besides, the M1 transition occur between two totally symmetric states ($F = F_{max}$) are forbidden, therefor M1 transition occur between low-lying collective states, these states must be contain components with mixed symmetry state, when ($F < F_{max}$), this allows to use the strength of M1 transition between low-lying collective state and F-spin mixing [17-18]. The M1 operator is obtained by making $I = 1$ in the single boson operator of the IBM-2 and can be written as [19-20]:

$$\mathcal{T}^{(M1)} = \{ (d_{\pi}^{+}d_{\pi})^{(1)} - (d_{\nu}^{+}d_{\nu})^{(1)} \} (g_{\pi} - g_{\nu})$$

(7)

Where g_{π}, g_{ν} represent the factor of nuclear structure for proton and neutron respectively, the total g- factor is defined by Sambataro’s equation [21];

$$g = (g_{\pi}N_{\pi} + g_{\nu}N_{\nu}) / (N_{\pi} + N_{\nu})$$

(8)

RESULTS AND DISCUSSION

1. Energy Spectra

The platinum isotopes are neutron rich, have $Z=78$, the numbers of boson proton $N_{\pi} = 2$ and boson neutron N_{ν} varied from 4 in 168Pt isotope to 1* in 202Pt isotope (* means hole boson). To study the energy levels of Pt isotopes, we need to estimate the parameters used in (IBM-2), by applying the NPBOS package, the fitted values of...
these parameters are listed in Table (1), they were treated as a free parameters and their values were estimated by fitting to the experimental energy level. In general we observed that the (ε) parameters decreasing with neutron numbers up to mid shell (N=104) and then increases again, the (κ) parameter increases proportionally with the increase the neutrons number and then decreases again after the mid shell, the (χ_{ν}) value always increasing linearly with increasing neutron numbers. The values of Majorana parameters terms ($\zeta_{2,3}, \zeta_{2}$) were selected for a certain values and adjustable with the study of mixed-symmetry states (MSS) of the energy levels. The values of $\chi_{\pi} = -0.88$ and $\zeta_{1,3} = -0.083$ were fixed for all Pt isotopes.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>ε</th>
<th>κ</th>
<th>χ_{ν}</th>
<th>$CL_{0,1,2}$</th>
<th>$CL_{0,1,2,0}$</th>
<th>ζ_{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>168Pt</td>
<td>4</td>
<td>0.999</td>
<td>-0.184</td>
<td>-0.224</td>
<td>-0.310,-0.192,-0.198</td>
<td>000,000,000,000</td>
<td>+0.040</td>
</tr>
<tr>
<td>170Pt</td>
<td>5</td>
<td>0.975</td>
<td>-0.184</td>
<td>-0.128</td>
<td>-0.310,-0.188,-0.185</td>
<td>000,000,000,000</td>
<td>+0.035</td>
</tr>
<tr>
<td>172Pt</td>
<td>6</td>
<td>0.961</td>
<td>-0.184</td>
<td>-0.021</td>
<td>-0.310,-0.188,-0.182</td>
<td>000,000,000,000</td>
<td>+0.030</td>
</tr>
<tr>
<td>174Pt</td>
<td>7</td>
<td>0.903</td>
<td>-0.183</td>
<td>+0.106</td>
<td>-0.310,-0.188,-0.180</td>
<td>000,000,000,000</td>
<td>+0.025</td>
</tr>
<tr>
<td>176Pt</td>
<td>8</td>
<td>0.806</td>
<td>-0.182</td>
<td>+0.106</td>
<td>-0.310,-0.188,-0.180</td>
<td>000,000,000,000</td>
<td>+0.020</td>
</tr>
<tr>
<td>178Pt</td>
<td>9</td>
<td>0.594</td>
<td>-0.177</td>
<td>+0.263</td>
<td>-0.295,-0.140,-0.090</td>
<td>000,000,000,000</td>
<td>+0.015</td>
</tr>
<tr>
<td>180Pt</td>
<td>10</td>
<td>0.583</td>
<td>-0.179</td>
<td>+0.290</td>
<td>-0.294,-0.115,-0.081</td>
<td>000,000,000,000</td>
<td>+0.010</td>
</tr>
<tr>
<td>182Pt</td>
<td>11</td>
<td>0.603</td>
<td>-0.172</td>
<td>+0.330</td>
<td>-0.289,-0.115,-0.081</td>
<td>000,000,000,000</td>
<td>+0.005</td>
</tr>
<tr>
<td>184Pt</td>
<td>10</td>
<td>0.570</td>
<td>-0.172</td>
<td>+0.337</td>
<td>-0.283,-0.090,-0.078</td>
<td>000,000,000,000</td>
<td>+0.000</td>
</tr>
<tr>
<td>186Pt</td>
<td>9</td>
<td>0.560</td>
<td>-0.164</td>
<td>+0.355</td>
<td>-0.288,-0.090,-0.078</td>
<td>000,000,000,000</td>
<td>+0.005</td>
</tr>
<tr>
<td>188Pt</td>
<td>8</td>
<td>0.594</td>
<td>-0.161</td>
<td>+0.390</td>
<td>-0.200,-0.113,-0.090</td>
<td>000,000,000,000</td>
<td>+0.010</td>
</tr>
<tr>
<td>190Pt</td>
<td>7</td>
<td>0.570</td>
<td>-0.156</td>
<td>+0.500</td>
<td>0.000,0.000,0.000</td>
<td>000,000,000,000</td>
<td>+0.015</td>
</tr>
<tr>
<td>192Pt</td>
<td>6</td>
<td>0.570</td>
<td>-0.170</td>
<td>+0.510</td>
<td>0.000,0.000,0.000</td>
<td>000,000,000,000</td>
<td>+0.020</td>
</tr>
<tr>
<td>194Pt</td>
<td>5</td>
<td>0.574</td>
<td>-0.174</td>
<td>+0.530</td>
<td>0.000,0.000,0.000</td>
<td>000,000,000,000</td>
<td>+0.025</td>
</tr>
<tr>
<td>196Pt</td>
<td>4</td>
<td>0.576</td>
<td>-0.174</td>
<td>+0.559</td>
<td>0.000,0.000,0.000</td>
<td>000,000,000,000</td>
<td>+0.030</td>
</tr>
<tr>
<td>198Pt</td>
<td>3</td>
<td>0.600</td>
<td>-0.198</td>
<td>+0.901</td>
<td>-0.100,-0.100,-0.050</td>
<td>000,000,000,000</td>
<td>+0.035</td>
</tr>
<tr>
<td>200Pt</td>
<td>2</td>
<td>0.631</td>
<td>-0.198</td>
<td>+0.924</td>
<td>0.000,-0.005,-0.050</td>
<td>000,000,000,000</td>
<td>+0.040</td>
</tr>
</tbody>
</table>

The Hamiltonian operator in equation (1) was diagonalized to the binding energy and then excited energy level, the best fit to excited energy levels have been observed specially for the ground band (i.e. the states $2^{+}, 4^{+}, 6^{+}$ and 8^{+}), while the second and third bands it was found to have acceptable agreement, where these bands have some properties of the β and γ band so called (quasi beta and gamma band). The appearance 0^{+} states between $(4^{+}, 4^{+})$ for $(^{188}Pt, ^{190}Pt, ^{196}Pt$ and ^{200}Pt) isotopes have been observed, and between $(4^{+}, 6^{+})$ for $(^{194}Pt$) isotope and between $(2^{+}, 4^{+})$ for $(^{194}Pt$) isotope. As a result for this appearance, this state consider as the band head of considered quasi beta bands. Figure (1) shows a comparison between theoretical and available experimental energy levels for all studied platinum isotopes [22].
The images show various plots and diagrams related to the splitting of energy levels in different isotopes of platinum (Pt). The plots compare experimental data (EXP) with theoretical predictions from the IBM-2 model for different isotopes, including:

- 174\text{Pt}
- 172\text{Pt}
- 176\text{Pt}
- 178\text{Pt}
- 180\text{Pt}
- 182\text{Pt}
- 184\text{Pt}
- 186\text{Pt}

Each plot includes energy levels labeled with specific quantum numbers and their corresponding energies in MeV.
Figure 1. Comparison between calculated energy level and the available experimental data A=\(^{188}\)Pt, B=\(^{190}\)Pt, C=\(^{192}\)Pt, D=\(^{194}\)Pt, E=\(^{196}\)Pt, F=\(^{198}\)Pt, G=\(^{200}\)Pt, H=\(^{202}\)Pt, I=\(^{204}\)Pt, J=\(^{206}\)Pt, K=\(^{208}\)Pt, L=\(^{210}\)Pt, M=\(^{212}\)Pt, N=\(^{214}\)Pt, O=\(^{216}\)Pt, P=\(^{218}\)Pt, Q=\(^{220}\)Pt, R=\(^{222}\)Pt
2- The mixed symmetry state

When studying the effect of Majorana parameter ($\zeta_{1,3}$, ζ_2) on the calculated excitation energy level, we fixed the value of $\zeta_{1,3} = -0.083$ for all isotopes and varied the ζ_2 parameter between (+0.040 → -0.045) around the best-fitted. It is found that energy values of the state: 2_3^+, 2_4^+, 2_5^+, 3_1^+, 1_1^+ are strongly responsive to changes of the ζ_2 parameters in some isotopes only, therefore these states are verified as the first property of the Mixed symmetry state (MSS). Figure (2) explains the energy variation of these states as a function of the Majorana parameter ζ_2.

![Graphs showing energy variation of states](image-url)
Mohammed Abdul Kadhim Al-Sadiet al

Figure 2: variation of mixed symmetry state as a function of the Majorana parameter ζ. $A=^{190}\text{Pt}$, $B=^{192}\text{Pt}$, $C=^{194}\text{Pt}$, $D=^{196}\text{Pt}$, $E=^{198}\text{Pt}$, $F=^{178}\text{Pt}$, $G=^{180}\text{Pt}$, $H=^{182}\text{Pt}$, $I=^{184}\text{Pt}$, $J=^{186}\text{Pt}$, $K=^{188}\text{Pt}$, $L=^{190}\text{Pt}$, $M=^{192}\text{Pt}$, $N=^{194}\text{Pt}$, $O=^{196}\text{Pt}$, $P=^{198}\text{Pt}$, $Q=^{200}\text{Pt}$, $R=^{202}\text{Pt}$

Table 2: the $B(M1)$ transition of Pt. isotopes, units (μ_h)2

<table>
<thead>
<tr>
<th>Transition</th>
<th>^{190}Pt</th>
<th>^{192}Pt</th>
<th>^{194}Pt</th>
<th>^{196}Pt</th>
<th>^{198}Pt</th>
<th>^{200}Pt</th>
<th>^{202}Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1^+\rightarrow0^+$</td>
<td>Exp.</td>
<td>IBM-2</td>
<td>Exp.</td>
<td>IBM-2</td>
<td>Exp.</td>
<td>IBM-2</td>
<td>Exp.</td>
</tr>
<tr>
<td>$2^+\rightarrow2^+$</td>
<td>Exp.</td>
<td>IBM-2</td>
<td>Exp.</td>
<td>IBM-2</td>
<td>Exp.</td>
<td>IBM-2</td>
<td>Exp.</td>
</tr>
<tr>
<td>$3^+\rightarrow3^+$</td>
<td>Exp.</td>
<td>IBM-2</td>
<td>Exp.</td>
<td>IBM-2</td>
<td>Exp.</td>
<td>IBM-2</td>
<td>Exp.</td>
</tr>
</tbody>
</table>

Pelagia Research Library
3- The M1 Transitions

In order to calculate M1 transition one should estimate value of the g-factor for proton and neutron in equation (8). It was found that the predicted values for $g_\pi = 0.315(\mu_N)$ and $g_\nu = 0.398(\mu_N)$, where $(g_\pi - g_\nu) = 0.083(\mu_N)$ were the best fitted values. The $B(M1)$ reduced transition probabilities were calculated by using eq.(7) and listed in Table (2) for all Pt isotopes. The experimental values of $B(M1)$ were taken from reference [22].

In most cases in table (2) it has been recognized that, the value of $B(M1;1^+ \rightarrow 0^+)$ has a large value in comparison with any other transition probability. So one should compare and normalize them by the ratio define as [23];

$$R = \frac{B(M;I^+_f - I^+_i)}{B(M;I^+_{f'} - I^+_{i'})}$$

where R value determined by the value of $B(M;I^+_f - I^+_i)$ transition, if the R value large, this means that a small value of $B(M;I^+_{f'} - I^+_{i'})$ transition and state(I^+_i) is a fully symmetric state (FSS). However, if the R value small, this means that a large value of $B(M;I^+_{f'} - I^+_{i'})$ transition and state (I^+_i) is a mixed symmetry state (MSS).

Figure (3) shows the value of R for different M1 transition, as a function of mass number in all Pt isotopes.

In figure (A and B), we note the R ratio for 2^+_2 and 2^+_3 state are small for ($N_i = 4, 5, 6, 7, 8, 9, 6', 5', 4', 3', 2', 1')$. The ratio in figure (C and D) small value of the ration R for 2_4 and 2_5 state.
for \(N = 6,7,8,9,10,11,10^\ast, 9^\ast, 3^\ast, 2^\ast, 1^\ast \) and \(8,9,10,11,10^\ast, 9^\ast, 7^\ast, 6^\ast, 5^\ast, 4^\ast, 3^\ast, 2^\ast, 1^\ast \) respectively. This because of that all of these isotopes have large value of \(B(M1) \), so these states are mixed symmetry states.

CONCLUSION

We have presented the predicted excitation spectra and \(B(M1) \) for even mass Pt isotopes in the framework of IBM-2. A suggestion of spin and parity for some highly excited state has been made. We have examined the properties of mixed symmetry states on excited states around 2 MeV and found that, the states \((2_s, 2_d, 2_s, 3_s, 1_i) \) are good candidate for mixed symmetry states. The excitation energy of these states found to be very sensitive to variation of Majorana parameter specially \(\xi_2 \) parameter. It is also found that, there is a clear effect of \(B(M1) \) transition on the characteristic of the mixed symmetry state in particular \(1^+_1 \) state.

Acknowledgments

The authors of this work would like to express many thanks to the physics department and the college of sciences and university of Babylon for their support.

REFERENCES