Impression of Disparate Levels of Poultry Manure and Humic Acid on the Yield and Yield Traits of Maize (*Zea Mays L.*)

Abid Hussain1, Subhanullah2, Mukhtiar Ali*1, Waqar Ali1, Muhammad Tariq1, Shabir Muhammad1, Mussadiq Khan Khalil1 and Muhammad Owais Khan1

1Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan
2Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan

*Corresponding author: Mukhtiar Ali, Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan, E-mail: mukhtiar@aup.edu.pk

Received date: March 24, 2018; Accepted date: June 27, 2018; Published date: July 10, 2018

Copyright: © 2018 Hussain A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Use of inorganic fertilizers have some problems to farmers in terms of high cost and short residual effect. Since use of organic fertilizers have a long residual effect but the nutrient requirement of crops is not fulfill in one season. So, using of combination of different organic manures can not only improve soil properties but also fulfill the nutrients requirement of crops. Therefore, a study was carried out aiming use of combinations of organic manures to improve maize yield and quality at the Cereal Crops Research Institute (CCRI), Pirsabak District Nowshera, KP, Pakistan during Kharif 2016. Poultry Manure (PM) and Humic Acid (HA) combinations were used as treatments including T1=Control, T2=2.5 tons PM ha−1+5 kg HA ha−1, T3=5 tons PM ha−1+4 kg HA ha−1, T4=7.5 tons PM ha−1+3 kg HA ha−1, T5=10 tons PM ha−1+2 kg HA ha−1 and T6=12.5 tons PM ha−1+1 kg HA ha−1. A basic dose of NPK was applied at the rate of 60:40:30 kg N, P and K ha−1. The results showed that highest days number to tasseling (55) and to silking (56) were recorded when PM and HA were applied at the rate of 12.5 tons PM ha−1+1 kg HA as compared with control plots. Highest plant height (185.33 cm), leaf area (411.26 cm2), cob length (17.0 cm), grain number cob−1 (413 g), grain yield (4783.3 kg ha−1), 1000 grain weight (413 g) and stover yield (13197 kg ha−1) were produced when PM and HA were applied at the rate of 12.5 tons PM ha−1 and 1 kg HA ha−1 as compared with the control plots. It is recommended that use of HA and PM in blending not only improves crop yield but also has a long term residual effect and improve soil properties as well.

Keywords: Maize yield; Humic acid; Poultry manure; Kharif crop; CCRI; Pakistan

Introduction

Maize botanically called *Zea mays L.* belongs to the family Poaceae. The mentioned crop is one of the most prevailing cereal crops of the world. Maize ranked 3rd afterward wheat and rice. It is an annual cross-pollinated crop having erect, thick and strong culms or stalk with nodes and internodes having adventitious roots that helps in preventing it from logging. It has a short growth duration and has a potential of higher yield and thus is a great source of food and fodder. Maize and corn meal are used as a staple food in many regions of the world. In industries maize is used for the preparation of corn oil, corn flakes, corn syrups etc. maize is a major source of starch, which can also be used in preparation of plastics, fabrics, adhesives, and many other chemical products. It is also used in the production of ethanol, which is a bio-fuel. Maize set up 6.4% of the total grain production in the country which is very good in compare to other cereal crops and contribute alots in the national economy and is used as a virtuous source for food and feed as a fodder. In Pakistan maize is grown on an area of 1053 thousands ha, with production of 3595 thousands tones and average yield is 3416 kg ha−1, while in province it is grown on an area of 310 thousand ha, with total production of 959 thousand tones and average yield is 1881 kg ha−2 (MINFAL 2007).

PM is an organic manure which assist in enhancing the nutrient availability and also improving the physical properties of soil. The PM and HA so produced is disposed of in several methods, including burning. However, some farmers are aware of the importance effects of PM and HA its release of different gases and nutrients for a good response in crop growth. Use of PM is therefore mostly used for improving crop productivity in Pakistan. The advantageous impact of the addition of HA to soil is linked with the improvement in physicochemical and biological conditions of soils [1].

It is thought that PM and HA are the small reservoir of N, but is in a very stable form which assists as slow releasing N fertilizer. Various micronutrients are also present in HA that are chelated by that HA [2]. PM makes the soil porous and improve water holding capacity. These chelates (HA and PM) can adjust the supply of micronutrients and thus promoting the activity of microorganisms in soil [3]. HA employs a stimulatory, conditioning and growth enhancing effect on soil when applied in combination with inorganic fertilizers because of its...
properties to hold nutrients and to release them when they are required by plants [4]. A commercial hamate consisted of 58% organic matter, 32% ash and 10% moisture. HA contains two fraction of the nutrients of which mostly is present in HA while in fulvic acid form less nutrients is present. The organic basic primary nutrients composition (59% C, 5% H and 36% O) likewise recommend the HA nature. HA is a natural product that implies growth promotion when applied it in combination with inorganic fertilizers.

Materials and Methods

To investigate the impact of PM and HA on the growth and yield of maize crop, an experiment was conducted at the Cereal Crops Research Institute (CCRI), Pirsaebak Nowshera Khyber Pakhtunkhawa during Kharif 2016. The experiment was carried out in randomized complete block design with three replications (Table 1).

Table 1. Different levels of Poultry Manure (PM) and Humic Acid (HA).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Poultry Manure (t ha⁻¹)</th>
<th>Humic Acid (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>T3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>T4</td>
<td>7.5</td>
<td>3</td>
</tr>
<tr>
<td>T5</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>T6</td>
<td>12.5</td>
<td>1</td>
</tr>
</tbody>
</table>

A plot size of 18.75 m² (5 rows, 5 m long and 0.75 m apart) was used. Both the factor levels were applied and mixed in soil before sowing according to the treatments. Basal dose of NPK were applied at the rate of 60:40:30 kg NPK ha⁻¹. Urea was applied in three split applications while all P and K were applied at the time of sowing. Maize variety Azam was used as a test crop. Soil samples were collected and physicochemical characteristics of the experimental site were determined. The soil on which experiment was carried out were alkaline with the pH of 7.66, non-saline having EC 1.34 dSm⁻¹, content of organic matter was low (0.85%) and AB-DTPA extractable P (3.02 mg kg⁻¹) [5-8].

Days to tasseling

Days to tasseling were counted from the data of sowing when 75% tassels appeared in each treatment.

Days to silking

Days to silking were counted from the data of sowing when 75% silks appeared in each treatment.

Plant height

Plant height of five randomly selected plants was measured with the help of meter rod from ground level to the flag leaf and then average plant height was calculated.

Mean Leaf Area

Leaf area was calculated from three randomly selected plants in each plot and three leaves were measured in each plant. Leaf area for individual leaf was determined by measuring the length of leaf blades from their base to the leaf tip and width taken in three parts of leaf (starting point, mid of leaf and end point) and average leaf length (Leaf L) and leaf width (Leaf W) were
Grains per cob sampled, dried, shelled and shelling percentage was counted grains from each plot and their weights were determined by using digital gram scale. Stover yield at harvest were determined. Then grain yield (kg ha\(^{-1}\)) from each plot was calculated.

Results

The results revealed that all of the parameters are significantly affected by differences in the levels of HA and PM (Table 2). Highest plant height were obtained from HA and PM applied at 1 kg+12.5 kg ha\(^{-1}\). Similar is the case with leaf area, cob length, grains cob, 1000 grain weight, stover yield and grain yield, all of them were giving high values when applied HA and PM at 1 kg+12.5 kg ha\(^{-1}\). In Days to tasseling and silking, treatments 1, 2, 3 and 4 were not statistically significant while treatment 5 and 6 showed delayed in tasseling and silking and were significantly different from the mentioned treatments. Plant height was statistically significant, highest plant height were obtained from treatment 6 having PM and HA applied at 12.5 tons and 1 kg ha\(^{-1}\). Treatments effect on leaf area were also statistically significant. More leaf area were obtained from treatment 6 followed by T5 and so on. Long cob length were obtained from T6 followed by T5, T4, T3, T2 and the control (14.8 cm) effect on cob length were short in comparison to other treatments. Using PM and HA in combination can abruptly fulfill plant nutrients demand and also improve soil properties that can ultimately help in settling of nutrients in soil for a long period of time. Grains per cob were maximum in T6 (413) by applying PM and HA at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5, T4, T3, T2 and the control (14.8 cm) effect on cob length were short in comparison to other treatments. Using PM and HA in combination can abruptly fulfill plant nutrients demand and also improve soil properties that can ultimately help in settling of nutrients in soil for a long period of time. Grains per cob were maximum in T6 (413) by applying PM and HA at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on. 1000 grain weight were found maximum in T6 where PM and HA were applied at 12.5 tons and 1 kg ha\(^{-1}\) followed by T5 (400) where PM and HA were applied at 10 tons and 2 kg ha\(^{-1}\) and so on.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Days to tasseling</th>
<th>Days to Silking</th>
<th>Plant height</th>
<th>Leaf area</th>
<th>Cob length</th>
<th>Grains cob(^{-1})</th>
<th>1000 weight</th>
<th>Stover yield</th>
<th>Grain yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52BC</td>
<td>53B</td>
<td>153.00C</td>
<td>324.33C</td>
<td>14.8C</td>
<td>317D</td>
<td>252D</td>
<td>9022C</td>
<td>2682.7E</td>
</tr>
<tr>
<td>2</td>
<td>51C</td>
<td>53B</td>
<td>167.67BC</td>
<td>377.33AB</td>
<td>15.0C</td>
<td>393C</td>
<td>274C</td>
<td>10725BC</td>
<td>3161.7D</td>
</tr>
<tr>
<td>3</td>
<td>51C</td>
<td>54B</td>
<td>173.00AB</td>
<td>380.45AB</td>
<td>15.3BC</td>
<td>395C</td>
<td>294C</td>
<td>11222AB</td>
<td>3259.0 D</td>
</tr>
<tr>
<td>4</td>
<td>51C</td>
<td>54B</td>
<td>171.33AB</td>
<td>355.44BC</td>
<td>16.2AB</td>
<td>380B</td>
<td>315B</td>
<td>12541AB</td>
<td>3799.7C</td>
</tr>
<tr>
<td>5</td>
<td>53AB</td>
<td>55A</td>
<td>184.33A</td>
<td>395.29AB</td>
<td>16.3AB</td>
<td>400AB</td>
<td>400AB</td>
<td>12039AB</td>
<td>4336.7B</td>
</tr>
<tr>
<td>6</td>
<td>55A</td>
<td>56A</td>
<td>185.33A</td>
<td>411.26A</td>
<td>17.0A</td>
<td>413A</td>
<td>413A</td>
<td>13197A</td>
<td>4783.3A</td>
</tr>
</tbody>
</table>

LSD Test=0.05
All the results were significantly affected by different levels of Humic Acid (HA) and Poultry Manure (PM)
Discussion

Use of inorganic fertilizers in up-to-date intensive cropping system is highly used for enhancing production and completely ignoring organic fertilizers usage. Use of inorganic fertilizers at an increasing rate is very upsetting especially nitrogenous fertilizers and it will be two fold by the end of 2050. Using HA and PM in combinations is very helpful in utilizing nutrients to plants but also improving soil properties. This study was used to evaluate the impact of organic manures different levels on maize yield and yield traits. The effect of HA were been found beneficial over yield parameters [16-17]. Variations in soil, climate, crop species and cultural practices can affect the degree and response of crop towards HA. About 20-45% of wheat and maize crop yield is increases with the application of HA derived from coal in Peshawar valley calcareous soils. Plant growth is improving by the application of HA because of its effect on rhizosphere and root enzymes [18]. PM uses improve plant growth as it provide nutrients as it contains enough essential micronutrients compared to other manures. PM uses are helpful in improving soil fertility status, enhances organic matter content, soil microbes activities and improving water holding capacity of soil. PM’s application to soil can enhance crop plant height by 10.6% as by comparing with the control treatment [19]. Maximum number of grains per year were obtained by the application of integrated organic effect due to its long term residual effect. The increment in biomass of maize crop is due the longterm residual effect of organic fertilizers [20]. Integrated usage of organic manures can resulted in enhancement of grain cob3, harvest index, grain weight and grain yield [21].

Conclusions

The following conclusions are drawn from the results of the conducted research work:

Mixed applications of PM and HA with basal dose of NPK enhance grain yield, grains per cob, 1000 grain weight, cob length and stover yield of maize [22-25].

Plant height and leaf area were significantly increased by the applications of PM and HA along with basal dose of NPK in area under investigation.

Days to tasseling and silking were delayed significantly by the applications of PM and HA with basal dose of NPK [26-31].

References

