Cytotoxic and Antitumor Activity of the Extract of Clerodendron infortunatum: A Mechanistic Study

Tiju Chacko1, Aditya Menon1, Shivaprabha V Nair1, Entissar AlSuhaibani2 and Cherupally Krishnan Krishnan Nair*1

1Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla - 689101, Kerala, India
2King Saud University, College of Science, Saudi Arabia

ABSTRACT

Objective: To investigate the molecular mechanism of anti-tumor activity of Clerodendron infortunatum extract (CIE) under in vitro condition.

Materials and Methods: The cytotoxic activity of CIE extract was tested on murine tumor cells (Dalton’s lymphoma ascites cells - DLA) and normal mouse cells (splenocytes) by trypan blue dye exclusion assay. The ability of the extract to induce apoptosis was measured via acridine orange and propidium iodide dual staining method. Apoptosis induction was confirmed by the analysis of level of expression of various apoptotic genes like bax, bcl-2, caspase 8 and caspase 9.

Results: The extract showed a dose dependent anti-proliferative activity on DLA cells whereas mouse splenocytes were found to be not affected. Treatment of DLA cells with CIE increased the number of apoptotic events in DLA cells. Increase in the bax/bcl-2 ratio along with an escalation in the expression of caspase 9 by almost 60 fold confirmed the induction of intrinsic pathway of apoptosis.

Conclusions: CIE showed effective anti-proliferative activity on DLA cells by the induction of intrinsic pathway of apoptosis.

Keywords: Clerodendron infortunatum, Dalton’s lymphoma ascites cells, Apoptosis, bax/bcl-2 ratio.

INTRODUCTION

Cancer is the second largest common disease and a major Global health burden. It was estimated that, worldwide there were 10.9 million new cancer cases, 6.7 million deaths due to cancer, and 24.6 million persons living with cancer in 2012. Development of cancer is a multistage process due to the accumulation of mutagenic alterations occurring over a span of years resulting in uncontrolled cell growth and division. These genetic
alterations are sometime carried in the germline⁶.

Plants have been used as medication for cancer⁷. Over 60% of the currently used anti-cancer agents are derived from natural sources⁸ - plants, marine organisms and micro-organisms⁹. Many of the commonly used anti neoplastic agents such as taxol, vinblastine, vincristine and camptothecin are derived from plants. Though the discovery of these natural compounds and their derivatives have facilitated in our combat against various types of cancers, there is still a vast repertoire of phytochemicals useful for treating cancer, are yet to be identified and characterized. Hence initial research focuses on screening the ability of various plant extracts for their potential cytotoxic and anti-proliferative property¹⁰. One of the major advantage of plant derived drugs is the absence of side effects, which is often found associated with synthetic drugs in the market¹¹.

Clerodendron, is a very large and diverse genus, widely distributed in Asia, Australia, Africa and America¹⁰. The plants of this genus have been used by tribal people in colic, scorpion string, snake bite, tumor and certain skin diseases, also used in Indian folk medicine for the treatment of bronchitis, asthma, fever, diseases of the blood, inflammation, burning sensation and epilepsy¹². The roots of the plant has laxative, diuretic, analgesic, anti-inflammatory, anti-tumor and antibacterial activities¹³,¹⁴.

Quercetin is a polyphenol which has recently gained considerable attention due to its prophylactic and therapeutic properties in the prevention of cardiovascular diseases, cancer, cataract etc¹⁵. Various parts of Clerodendron infortunatum contain quercetin, having the highest concentration in the flowers, followed by leaves and then roots¹⁶. The present work aims to explore the antitumor activity of hydro-alcoholic extract of C. infortunatum on the murine tumor cells. The extract induced mortality and apoptosis in murine tumor, Dalton’s Lymphoma Ascites (DLA), cells, while causing minimal cytotoxicity and no apoptosis induction in mouse splenocytes. The levels of expression of genes involved in apoptotic pathways were studied by quantitative real time PCR in the tumor cells to understand the mechanism.

MATERIALS AND METHODS

Cells

DLA cell line was obtained from Amala Cancer Research Centre (Thrissur, India) and was propagated as transplantable ascites tumors in male Swiss albino mice. Cells were withdrawn freshly from mouse peritoneum, washed with PBS and counted using hemocytometer. Six million cells per milliliter of DMEM (dulbeco’s modified Eagle’s Medium) with 10% FBS were used for further studies.

Preparation of hydro-alcoholic extract of Clerodendron infortunatum

Dried roots of Clerodendron infortunatum were finely powdered. The powder was weighed and subjected to soxhlet extraction at 70°C with 50% ethyl alcohol. The extract was evaporated in a rotary evaporator at 50°C under vaccum and finally, the extract was subjected for lyophilization to get a dry crude extract with a yield of 12% of the powder. This hydro-alcoholic extract thus obtained was termed as CIE and stored at 4°C.

HPLC

The extract was subjected for HPLC analysis using Agilent - Model No. 1260 System. An aqueous solution of CIE, 10 mg/ml, was prepared and filtered through a 0.2 µm filter and 20 µL was injected into HPLC equipped with PAD (Pixel Array Detector) detector and SunFire- C 18,
5 µm column. 1 mg/ml standard quercetin was prepared and 20 µl was injected. The solvents used for gradient elution were (A) Acetonitrile and (B) HPLC grade water. Detection Wavelength was 280 nm. The percentage of quercetin in the CIE was also calculated.

Cytotoxicity of Clerodendron infortunatum on DLA and mouse spleenocytes

Suspensions of DLA cells and mouse splenocytes, in DMEM with 10% fetal calf serum, at (6 × 10^6 cells/ml) were treated with five different concentrations of CIE. The cells were incubated for 20 hours after addition of the extract at 5% CO₂ and 37ºC. CIE induced cytotoxicity was checked up to 20 hours using trypan blue dye exclusion assay. Briefly, 80 µl of cell suspension was mixed with 80 µl of 0.2% trypan blue, kept for 2-3 minutes and loaded on a haemocytometer. The no. of stained and unstained cells was counted separately. More than 100 cells of each type were counted. The percentage survival of cells were calculated and plotted against concentration of drug.

% of survival = (Live cell count/total cell count) ×100.

Induction of apoptosis on DLA by Clerodendron infortunatum

Suspensions of DLA cells (6 × 10^6 cells/ml) in DMEM with 10% fetal calf serum, were treated with five different concentrations of CIE (0 – 500 µg/ml). The cells were incubated for 16 hours after addition of the extract with 5% CO₂ and at 37ºC. CIE induced apoptosis was checked on 16 hours using Acridine Orange (AO) and Propodium Iodide (PI) Double Staining, described in detail elsewhere. The cells were pelleted by centrifugation (200 x g; 10 mm) and 80 µl of cell-free supernatant was removed. One microliter of a mixture of 100 µg/ml acridine orange and 100 µg/ml ethidium bromide (both prepared in isotonic saline) was added to the cell pellet, the cells were resuspended, and 10 µl of the cell suspension was placed on a clean, ordinary microscope slide and covered with a 22-mm square cover slip. The number of live and dead cells with normal vs. apoptotic nuclei was determined by UV microscopy using a 40 X dry objective and a filter combination suitable for observing fluorescence. Viable and apoptotic cells were quantified in a population of 200 cells. The results were expressed as a proportion of the total number of the cells examined. Percentage of apoptosis was calculated with the formula given below.

% of apoptosis = (number of apoptotic cells/total number of cells) × 100.

Expression of various apoptotic genes in DLA cells treated with CIE

RNA extraction

Total RNA from the cells treated with different concentrations of CIE for 16 hours were isolated by the method developed by Chomczynski and Sacchi, which is a modification of Acid Guanidium Thiocyanate-Phenol-Chloroform Extraction. The isolated total RNA was converted to cDNA.

Preparation of complementary DNA

Reverse transcription of isolated RNA and PCR were done using Applied Biosystems Geneamp Thermal Cycler 2720. cDNA was synthesized as per the manufacturers protocol. Briefly, mRNA isolated from DLA was mixed with random hexamer for priming at 65ºC for 5 minutes. This was mixed with the master mix containing dNTPs, DTT, reverse transcriptase and RNase inhibitor. The condition for cDNA synthesis was 50ºC for 1 hour followed by inactivation at 95ºC for 5 minutes.
Analysis of levels of expression of bax and bcl-2

The levels of bax and bcl-2 is used as a marker for identify the induction of apoptosis in cells. The cDNA was subjected to PCR to find out whether there was any change in the expression of bax and bcl-2 while gapdh was used as the house keeping control. The forward and reverse primers for PCR were 5’- AAG GGC TCA TGA CCA CAG TC-3’ and 5’-TGT GAG GGA GAT GCT CAG TG-3’ for gapdh, 5’-CTC GTC GCT ACC GTC GTG ACT TCG-3’ and 5’-CAG ATG CCG GTT CAG GTA CTC AGT C-3’ for bcl-2 and 5’-AAG CTG AGC GAG TGT CTC CGG CG-3’ and 5’-GCC ACA AAG ATG GTC ACT GTC TGC C-3’ for bax respectively. The cycling conditions of bcl-2 and bax as follows, 94ºC for 1 minute (denaturation) 64ºC for 1 minute (annealing) 72ºC for 1 minute (extension) 35cycles

For the housekeeping gene gapdh the cycling condition is as given below, 95ºC for 10 minutes (denaturation) 56ºC for 30 seconds (annealing) 72ºC for 59 seconds (extension) 35cycles

The final amplicons were electrophoresed in a 2% agarose gel containing 2 mg of ethidium bromide and the gel was visualized under a gel documentation system. With the software provided with the gel documentation system, the thickness of the bands were analyzed and expressed as a change in expression with respect to the untreated control.

Quantitative polymerase chain reaction (qPCR)

The cDNA prepared were subjected to qPCR for checking the levels of expression of various genes like bax, bcl-2, caspase-8 and caspase-9, gapdh was used as the house keeping control. The levels of expression of various genes were expressed as relative fold change in expression in comparison with the control group.

Real-time PCR was done on an AB Applied Biosystem Step One Plus Real-time PCR System. The forward and reverse primer pairs for detecting the expression of bax were 5’-TGC TAC AGG GTT TCA TCC AG-3’ and 5’-CAC GTC AGC AAT CAT CCT CT-3’. PCR primers for caspase 8 were forward 5’- GAT GTT GGA GGA AGG CAA TC-3’ and reverse 5’-ATT CCA ACT CGC TCA CTT CT-3’. The primer pairs for gene caspase 9 is forward 5’-TGA CAT CCT TGT GTC CTA CTC-3’ and reverse 5’-CCA GGA ATC TGC TTG TAA GTC-3’

The forward and reverse primers for the gene bcl-2 were 5’-AGG ATT GTG GCC TTC TTT GA-3’ and 5’-ATG CTG CTG GGG CCA TAT AGT GC-3’ and for gapdh were forward 5’-GCG AGA CCC CAC TAA CAT C-3’ and reverse 5’- GAG TTG TCA TAT TTC TCG TGC TGC-3’.

The cycling conditions for all these genes were as provided below, 95ºC for 15 seconds (denaturation) 53ºC for 1 minute (annealing) 72ºC for 30 seconds (extension) 45cycles

The quantitative real-time data is presented as comparative Ct method also known as the 2^∆∆CT method19. The comparative Ct method makes several assumptions, including that the efficiency of the PCR is close to 1 and the PCR efficiency of the target gene is similar to the internal control gene20. The advantage of this method of presentation is that data can be represented as fold change.

Fold change = 2^-∆∆CT

((Ct gene of interest - Ct internal control) Sample A – (Ct gene of interest - Ct internal control) Sample B).

The data obtained were presented as a histogram denoting the fold change of expression of the genes of interest compared with the house keeping gene.
RESULTS

High pressure liquid chromatography analysis of CIE

The HPLC Chromatogram of Hydroalcoholic CIE and the reference standard Quercetin are presented in figure 1a and figure 1b.

The HPLC chromatogram of reference standard Quercetin showed a peak of 44.507 minutes with an area of 16424464 while Hydro-alcoholic CIE showed a corresponding peak of 44.827 with an area of 975343. 0.59% of quercetin was present in CIE extract.

Cytotoxicity of CIE on DLA cells

The viable cells were counted in a hemocytometer. Upon treatment with various concentrations of CIE (50 - 500µg/ml) the number viable DLA cells was found to decrease in a concentration dependent as well as time dependent manner. Almost all the cells in the treatment group with the highest extract concentration were found to be dead at 19th hour (Supplementary figure 1). CIE did not exhibit much toxicity on splenocytes. At 20 hours of incubation, splenocytes treated with the highest concentration of CIE showed 94.9% survival. This shows that, CIE at this concentration did not exert much toxicity to normal cells. The comparative data of survival percentage of DLA cells and splenocytes at 20 hr of CIE treatment is presented in supplementary figure 2.

Induction of Apoptosis by CIE

The percentage of apoptosis was acquired on 16th hour of incubation on DLA cells with various concentration of CIE and the data is presented as apoptotic index in figure 3. Apoptotic index was observed to increase with the increase in concentration of CIE treatment, with the lowest concentration of CIE (50 µg/ml) showing an apoptotic index of 17% while the highest concentration, 500µg/ml induced 58% of the DLA cell to undergo apoptosis.

Levels of expressions of bax and bcl-2

The expression levels of the anti-apoptotic gene bcl-2 and pro-apototic gene bax in DLA cells treated with various concentration of CIE were assayed to confirm the induction of apoptosis. In many systems, members of the bcl-2 family modulate apoptosis. In the present experiment, treatment of DLA cells with various concentrations of CIE shifted the ratio favoring the induction of apoptotic pathway as can be evident from the data presented in figure 4. The expression levels of bcl-2, bax and the house keeping gene gapdh upon 16 hour of application of the extract have been shown in supplementary figure 2.

Relative expression levels of various apoptotic genes on DLA cells treated with various concentrations of CIE

Upon treating DLA cells with various concentrations of CIE (50-500µg/ml), a relative change in expression of the anti-apoptotic gene bcl-2 and pro-apototic gene bax were observed. Bax was found to be increased in concentration dependent manner (figure 5a). This confirmed the induction of apoptosis.

The pathway with which apoptosis progress can be discerned by analyzing the expression of Caspase-8 and Caspase-9 which corresponds to extrinsic and intrinsic pathways. From figure 5b, it can be observed that expression of caspase 9 increased dramatically corresponding to the activation of intrinsic pathway. Gapdh served as the house keeping control in both the experiments.

DISCUSSION

Apoptosis and necrosis are the two pathways through which anticancer drugs induce cell death. Anticancer agents at
lower concentration cause apoptosis while higher cause necrosis22. The anticancer agents inflict injuries and damages to cancer cells resulting in the activation of the pro-apoptotic factors to induce apoptosis. The cells escape apoptosis by developing resistance to anticancer agents23.

Apoptosis or programmed cell death is an orchestrated mechanism of cell death which ensures neat and ordered elimination of unwanted cells and cells with damage from normal tissue24. There are 2 commonly described initiation pathways of apoptosis – the extrinsic pathway and the intrinsic pathway. Intrinsic pathway is triggered by irreparable genetic damage, hypoxia, higher concentration of cytosolic Ca2+, severe oxidative stress etc25. As a result of these death signals, pro-apoptotic multi-domain Bcl-2 family proteins such as Bax and Bak form oligomer in mitochondrial outer membrane which confers the release of cytochrome C and other pro-apoptotic molecules into cytoplasm26. Cytochrome C triggers the activation of initiation Caspase 9 which in turn activates downstream executioner caspases such as effector caspases - caspase-3, 6 and 727. These effector caspases cleave nuclear lammins, cytoskeletal proteins and inhibitor of DNase leading to cell death. This culminates in the formation of apoptotic bodies which are engulfed and eliminated by nearby and phagocytic cells28. The extrinsic pathway of apoptosis is activated by tumor necrosis factor (TNF) which triggers a downstream process culminating in the activation of pro-caspase 8, which activates downstream effector and executioner caspases 3 and 729. Apoptosis induction in cells can be confirmed by an increase in the ratio of Bax to Bcl-230,31.

Several studies established that some phytochemicals present in medicinal plants exert anti-tumorigenic activity by inducing apoptosis32. Treatment of DLA cells with CIE induced apoptosis. This was primarily established visually by the typical morphological changes a cell undergoes during apoptosis, including chromatin condensation and membrane blebbing33. The apoptosis induction was confirmed by the increased bax/bcl2 ratio34.

To identify the pathway by which apoptosis occurred, the expression levels of caspase 8 and 9 were studied. Caspase 8 activation occurs during extrinsic pathway, when the death signal comes from outside the cell. Intrinsic pathway is characterized by the activation of caspase 9. In the present study, DLA cells treated with CIE showed a significant increase in the expression of caspase 9 confirming the activation of intrinsic pathway.

The trypan blue dye exclusion assay is used for evaluating the viability of cells. The cellular damage is due to membrane lipid peroxidation and protein denaturation by extracellular or intracellular insult mediated through toxic substances35. CIE showed specific toxicity towards DLA cells clearly indicating its specificity on rapidly dividing cells suggestive of its anti-proliferative activity.

Quercitin has been shown to possess anti-proliferative and cytotoxic activity on various cell lines36. The mechanism involved for these activities have not yet been properly elucidated. The hydro-alcoholic extract also showed presence of various other compounds which may also be involved in exerting cytotoxicity to DLA cells. The present study showed that apoptosis induction is a major pathway by which CIE induced cytotoxicity in DLA cells. The presence of such phytochemicals in the extract could be the reason for such an activity. It is also interesting to note that toxicity was confined only to rapidly dividing cancer cells. The induction of toxicity can be due to the effect of a single compound or a group of compounds in the extract. Isolation, identification, and purification of these
compounds and elucidation of their biological activities would be a more rewarding and fruitful endeavor.

ACKNOWLEDGEMENT

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding the publication of this research group No (IRG14-05).

REFERENCES

Figure 1a. The HPLC Chromatogram of Hydro-alcoholic CIE
Figure 1b. The HPLC Chromatogram of reference standard Quercetin

Figure 2. Percentage survival of DLA cells and mouse splenocytes treated with CIE for 20 hours

Note: ‘a’ indicates p<0.05, ‘b’ indicates p>0.001, ‘c’ indicates p<0.001 when compared with respective control.
Figure 3. Effect of different concentration of CIE on induction of apoptosis on DLA cells presented as percentage of apoptotic index

Note: ‘a’ indicates p<0.05, ‘c’ indicates p<0.001 when compared with respective control.
Figure 4. bax/bcl-2 ratio of DLA cells treated with various doses of CIE (0-500 µg/ml). The ratios were calculated densitometric scans of the PCR amplicons of the respective genes.

Figure 5a. The relative fold change of various apoptotic genes (bax and bcl-2) in DLA cells treated with various concentration of CIE (50- 500 µg/ml).
Figure 5b. The relative fold change of various apoptotic genes (*Caspase-8* and *Caspase-9*) in DLA cells treated with various concentration of CIE (50-500 µg/ml).
SUPPLEMENTARY FIGURES:

![Graph showing percentage survival of DLA cells treated with Clerodendron infortunatum extract](image)

Figure 1. Percentage survival of DLA cells treated with *Clerodendron infortunatum* extract

Note: ‘a’ indicates p<0.05, ‘b’ indicates p>0.001, ‘c’ indicates p<0.001 when compared with respective control.
Figure 2. Electrophoretic separation of RT–PCR samples. Lane 1: PCR product from control DLA cells for bcl2, bax and gapdh. Lane 2, 3, 4, 5 and 6 for 50, 100, 200, 250, and 500 µg/ml Clerodendron infortunatum treated cells respectively.