
A Novel Approach to Vector-based Video Compression through Motion Tracking
Kanav Kalucha* and Abhi Upadhyay

Mission San Jose High School, California, United States
*Corresponding author: Kanav Kalucha, Mission San Jose High School, California, United States, E-mail: kanav.kalucha@gmail.com

Received Date: January 02, 2019 Accepted Date: January 21, 2019 Published Date: January 28, 2019

Citation: Kalucha K, Upadhyay A (2019) A Novel Approach to Vector-Based Video Compression through Motion Tracking. Am J Compt Sci Inform
Technol Vol.7 No.1: 32

Copyright: ©2019 Kalucha K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract
As the age of technology progresses, the demand for video
with higher resolution and bitrate increases accordingly, and
as video compression algorithms approach near-
theoretically perfect compression, more bandwidth is
necessary to stream higher-quality video. Higher pixel
resolutions do not change the fact that scaling individual
frames using bilinear or bi cubic filtering naturally causes
the video to lose detail and quality. In addition, as the
number of pixels per frame continues to increase, so does
the file size of each frame and ultimately the file size of the
fully rendered video. Over time, as file size increases and
required bandwidth increases, the cost of hardware systems
multiplies, requiring a solution for further compression.
Using core concepts of computer vision and Bezier models,
this project proposes a method of converting pixel-based
frames into a graphical vector format and applying motion
tracking methods to compress the rendered video past
current compression techniques. The algorithm uses the
canny operator to break down pixel-based frames into
points and then obtains Bezier curves through taking the
matrix pseudo inverse. By tracking the motion of these
curves through multiple frames, we group curves with
similar motion into “objects” and store their motion and
components, thus compressing our rendered videos: adding
scalability without losing quality. Through this approach, we
are able to achieve an average compression rate of 88%
over industry-standard compression algorithms for ten
sample H.264-encoded animation videos. Future work with
such approaches could include modeling different lighting
or shading with similar Bezier splines as well as bypassing
pixel-based recording altogether by introducing a method to
record video in a directly scalable format.

Keywords: Vector-based video; Higher resolution; Bezier
models; Graphical vector; Algorithm;Animation videos

Introduction
When recording any sort of media, specifically videos, all

technology today records in a pixel format. The pixel-based
format has a myriad of issues we identified and attempted to
mitigate when implementing our approach to video
compression. When scaled up, pixels do not maintain the image

quality and cohesion, and so existing technology, such as
focusing and sharpening based on edge and contrast detection,
is unsatisfactory [1]. The current, easiest solution to scaling is to
simply take pictures with a high enough resolution, but this
merely compounds the problem further, as these images still
cannot be scaled to even larger screens. As the resolution
accelerates, so does the memory required to store the image,
and at extremely high resolutions, certain screens such as older
phones and laptops do not have enough pixel density to fully
display each pixel, simply leaving wasted memory [2]. Traditional
video suffers from these same issues plaguing pixel-based
images, while also introducing the problem with FPS (frames per
second), or bitrate. A high FPS means much smoother playback
at the expense of processing power, while a low FPS could mean
choppy playback ruining the video. A variable bitrate that could
be controlled by the user is not possible, yet would lend utility
[3]. Finally, the largest problem with the status quo is of course
data storage. As Seagate predicts, by 2020, the world will have
produced six zettabytes of data it cannot easily store, and
according to Cisco, most of that data being transferred over the
internet in the form of video, with YouTube and Netflix
accounting for a large chunk [2]. Thus, the demand for greater
resolution continues to strain the existing bandwidth, leading us
to seek a solution with a high compression rate coupled with
adjustable resolution and bitrate.

With our solution, users will be able to input any simple
animated video and receive a compressed version of that video
encoded with our codec. When processed and compressed, the
video we produce would be more detailed and theoretically,
infinitely scalable without quality loss and a variable bitrate. We
plan on converting every frame of the simple animated video
into a vector graphic-based format. These vectors can be resized
to any resolution and retain their quality as they are simply a
collection of mathematical equations representing the lines and
colors in an image [4].

The compression would be efficient because storing vector
frames would reduce the file size compared to pixel-formatted
frames greatly, as vector graphics store lines and contours, not
individual pixels. Next, it would be compressed further as we
plan on tracking the motion of different objects in the video and
modeling that too with a mathematical equation. From there,
we would only have to store the vector of the object and the

Research

iMedPub Journals
http://www.imedpub.com/

DOI: 10.21767/2349-3917.100032

American Journal of Computer Science and Information

Technology

ISSN 2349-3917

Vol.7 No.1:32

2019

© Under License of Creative Commons Attribution 3.0 License | This article is available from: https://www.imedpub.com/computer-science-and-information-
technology/

1

http://www.imedpub.com/
https://www.imedpub.com/computer-science-and-information-technology/
https://www.imedpub.com/computer-science-and-information-technology/


change in its motion rather than a separate vector for each
individual frame, saving space and processing power.

With our solution, we begin the end of low quality, bloated
animated videos and replace it with a more versatile and
compressible format.

Methods
We started our project by initially creating multiple sample

animations and exported them as a regular video format. The
animations included just a simple circle moving across the
screen in different ways, whether it is straight, diagonally, or
following a curved path.

From these test videos, we began by using the well-known
OpenCV library to generate a set of points to represent each
frame. We did this specifically by applying mainly the Canny
operator over each frame, which would produce a result as
shown in Figure 1 below.

Figure 1: Result after applying the Canny operator.

After taking in a set of points for each object, we were able to
calculate the distance between any 2 points and differentiate
between 2 different Bezier curves if their endpoints were a
certain threshold away. From here, we took the set of points for
each curve and fitted a cubic Bezier curve to it by working
backwards and generating the control points for each curve. This
was done through taking the pseudoinverse of a matrix of points
and dividing it by multiple t (linear interpolation) intervals
(Pastva). At this point, we now have access to the full Bezier
curve for each object in each frame.

The next step included parsing this Bezier curve into an SVG or
vector format. Fortunately, the modern day SVG formatting
allows us to directly model Bezier curves by encoding it in XML.
A sample of the code is shown above in Figure 2. We have now
successfully completed the first portion of our project by
converting all frames of a video into a vector based format.

Figure 2: Sample of our SVG formatting

As for the second portion, motion tracking, we were able to
take the set of vector curves received after applying the Canny
operator and matrix pseudoinverse on one frame and track
individual curves across frames because their change in position
was under a predefined threshold. Then, we grouped sets of
vectors that moved similarly into “objects” and took the
weighted average of all the points in each object to obtain an
average point for that specific object in that specific frame. We
were then able to model the motion of that averaged point for
each object over the next multiple frames using another Bézier
curve through a least-squares regression. The motion of the
average point we tracked for one of our test cases, including the
whole set of points in the beginning frame and the end frame of
the constant motion is shown as a graph below in Figure 3.

Figure 3: Graph displays motion of the average point of an
object moving in a constant direction.

Taking in all this data, we then formatted a codec that could
represent the full video, including the motion of each object, in
correspondence with their respective SVG files, modeled with
the Bézier curve. The codec simply stores the SVG files for the
frames it cannot track motion in, and then stores the first frame
with a trackable object, followed by the motion line for the
object over frames i to j. A final sample of our codec is shown in
Figure 4, modeling a trackable object from frame 13 to frame 53,
with a motion line given as a cubic Bezier curve.

American Journal of Computer Science and Information Technology

ISSN 2349-3917 Vol.7 No.1:32

2019

2 This article is available from: https://www.imedpub.com/computer-science-and-information-technology/

https://www.imedpub.com/computer-science-and-information-technology/


Figure 4: Our final codec formatting.

Results
Compiling and analyzing the output from our compression

process for our test cases, we found that the compressed file we
generated had a size of around ~25 kb, compressed down from a
H.264 video of ~216kb. This is a compression rate of around 88%
from the current day standard for pixel-based video. It is,
however, important to note that our test cases involved a simple
ball that was easily modeled with Bezier curves moving in
different directions. We’ve shown a sample (Figure 5) of the
quality of video we’re able to achieve with the compressed
vector version and we can see that this sample has a much
higher quality compared to the original low-quality frames
encoded with H.264.

Figure 5: Depiction of quality of identical frames, before and
after compression

Based on our process for obtaining compressed video, we
noticed that simply converting frames of a pixel-based video into
a vector format already compressed the video by ~69%. When
applying our motion tracking algorithm to full vector based
frames, we were able to compress the fully vector formatted
video another ~61%, resulting in our final product, compressed
around 88% overall.

With this data, we were able to generate a breakdown of how
much storage each portion of our final product based on our
first test case. Each vector formatted frame took up around 1kb
of storage, whereas each pixel formatted frame took up around
3kb of storage. The structure for our codec, which held
information about the motion of different objects totaled to
around 4kb of storage, all for our first test case. This meant that
we were saving space on every single frame and allowed us to
compress these videos at an 88% compression rate.

Next, considering processing power, the complexity and
runtime of our algorithm depends on the complexity of the
video we’re dealing with. Constructing Bezier curves from a
collection of points requires taking the pseudoinverse of a
matrix of points, which is possible in O(nω)(Keller-Gehrig). This
must be done for m points per frame, where m is the average
number of points per frame. Assuming the number of vectors
per frame is linear with respect to the number of points per
frame, with n frames, the algorithm has a complexity of O(n . m .
mω), and using Le Gall’s upper bound of 2.3729 on ω, the matrix
multiplication constant, we have an overall complexity of around
O (nm3.3729)(Le Gall).

We now have the ability to convert simple animated videos
into a vector based format and compress them using motion
tracking. However, from this point, we would need to begin
development on video playback software so that our codec could
be unpacked and could playback each SVG frame as a regular
video would. This would include simply looping through each
frame at a specified frame rate, and moving objects based on
the Bezier curve that represents the motion of that object. We
also noted that since each object follows its own motion tracking
line over several frames, we could sample the line as often as
we’d like, meaning we could control the bitrate, or the FPS of the
video.

Overall, for our test cases, we were able to achieve a compress
rate of ~88%, a lot larger than what we originally expected at
55% compression.

Discussion
Our work with the compression of vector-based videos has

led us to believe that compression of current-day video is still
possible to great extents, even as we approach the theoretical
limit of pixel-based compression [2]. However, our work has only
been tested in-depth with simple animated videos. In the future,
we would have to conduct more research about how we can
incorporate this approach with complex animations that involve
multiple objects and complicated motion paths. We would also
have to think about how the lighting on and shading of these
different objects affects our results [1]. Lastly, we have come to
the conclusion that it’s best to convert animations into a vector-
based format rather than convert real life videos into these
formats. It is difficult to convert a real life still into multiple
shapes and objects with finite colors and clear contours. It may
be possible in the future to completely bypass the pixels in the
first place by introducing a method of recording video directly in
a scalable format rather than pixels, which could potentially be
its own research project.

American Journal of Computer Science and Information Technology

ISSN 2349-3917 Vol.7 No.1:32

2019

© Under License of Creative Commons Attribution 3.0 License 3



Acknowledgements
We’d like to thank the MIT THINK team for providing

mentoring and guidance to turn our proposal into a finished
project.

References
1. Patterson JW, Taylor CD, Willis PJ (2012) Constructing and

rendering vectorised photographic images. J Virtual Reality
Broadcasting 9:3.

2. Athow D (2015) The data capacity gap: why the world is running
out of data storage. IT Proportal 9.

3. Ortega A, Ramchandran K (1998) Rate-Distortion Methods for
Image and Video Compression: An Overview. IEEE Signal Process
Mag 23-50.

4. Hussin M, H0ussain MZ, Saddiqa M (2015) Circular Approximation
by Trigonometric Bézier Curves. Int J Mathematical,
Computational, Physical, Electrical Computer Engineering 9-1.

 

American Journal of Computer Science and Information Technology

ISSN 2349-3917 Vol.7 No.1:32

2019

4 This article is available from: https://www.imedpub.com/computer-science-and-information-technology/

https://www.imedpub.com/computer-science-and-information-technology/

	Contents
	A Novel Approach to Vector-based Video Compression through Motion Tracking
	Abstract
	Keywords:
	Introduction
	Methods
	Results
	Discussion
	Acknowledgements
	References


