A Gene approach on Sugarcane growth and production: Mini review

Suneel Dodamani, Adiveppa Vantamuri, Shridhar Ghagane, Gireesh Babu

Dr Prabhakar Kore Basic Science Research Centre, KLE University, Belagavi, Karnataka, India
Department of Biotechnology and Microbiology, Karnataka University, Dharwad, Karnataka, India
Biogenics, Research Centre in Biotechnology, Unakal, Hubli, Karnataka, India

ABSTRACT

The importance of sugarcane as commercial crop has long been known thing. The present review through a light on the genes with different functional properties and mechanism of action. The productivity and growth of sugarcane both dependent on the genes. The high yield of sugar, amino acids, micro and macronutrient absorption in sugarcane crop is systematically reviewed. Further, totally 13 genes have been characterized, SUC Gene Family, SuSy, SAI, PPDK, CT Gene Family, CRT/DRE, COR15a, Miscanthus-specific PPDK, CDPK, TRICH Gene Family, GL1, GL2, TTG1. Concluded that the functional genes are to taken into explanation along with field conditions, such as area of growth, moisture, water facility and availability of sunlight, micro & macro nutrient accessibility, use of pesticides and other physical and chemical parameters.

Keywords: Sugarcane, Genes, Physicochemical parameters.

INTRODUCTION

Saccharum is a complex genus characterized by high ploidy levels and composed of at least six distinct species – S. officinarum, S. barberi, S. sinensi, S. spontaneum, S. robustum and S. edule (Daniels and Roach, 1987; GRIN, 2004; Naidu and Sreenivasan, 1987). Described as an allopolyploid, modern cultivated sugarcane have approximately 80-140 chromosomes with 8-18 copies of a basic set (i.e. x = 8 or x = 10 haploid chromosome number) (D’hont et al., 1995; Ha et al., 1999; Ming et al., 2001).

Sugarcane described as an allopolyploid, modern cultivated sugarcane have approximately 80-140 chromosomes with 8-18 copies of a basic set (i.e. x = 8 or x = 10 haploid chromosome number) (D’hont et al., 1995; Ha et al., 1999; Ming et al., 2001). Sugarcane was vegetatively cultivated as noble canes (i.e. S. officinarum) until the end of the 20th century when it succumbed to the devastating serch disease which prompted plant breeders to hybridize it with its wild relative, S. spontaneum. In a process termed as nobilization, the resulting hybrid progeny was repeatedly backcrossed to S. officinarum to restore the high-sucrose producing plant types. S. officinarum, the noble cane from Asia, is thought to comprise a large part of the cultivated sugarcane genome and confers the genes for high sucrose content, low fiber, thick stalks, sparse pubescence, rare flowering and limited tillering (Ming et al., 2001).

The wild relative, S. spontaneum, comprise about 10% of the cultivated sugarcane as evidenced from in situ hybridization (D’hont et al., 1996) and is credited to impart the needed pest and disease resistance and abiotic stress tolerance due to its wide Eco geographical adaptive distribution (Sreenivasan et al., 1987), there are no active base broadening programs alongside cultivar development programs in most sugarcane breeding stations. This is
compounded by the practice of sugarcane breeders to use the proven cross method of choosing parents. The proven cross method has the bias of recurrently using, in high frequency, parents from good performing crosses. Such concentrated use of a few parental clones each crossing season seems to contradict the base lengthening energies (Heinz and Tew, 1987; Kimbeng et al., 2004). Untested crosses and new parents are relegated to exploratory evaluation and are thus proportionally lesser.

SUC Gene Family
Sucrose (SUC) plays a central role in plant growth and development as it is a major product of photosynthesis and is the major carbohydrate form used as energy source for growth or storage reserves. Sugarcane belongs to a group of plants that are very productive in assimilating its food by efficiently utilizing the C4 mechanism of CO2 fixation during photosynthesis (Grof, 2001).

SuSy
Sugarcane is unique because it stores its food not in the form of glucose but in the unstable form sucrose. Sucre Synthase (SuSy) plays a central role in carbohydrate metabolism in general, and sucrose accumulation in particular in all plant species. It belongs to a family of invertases which are enzymes specialized in hydrolyzing sucrose into glucose and fructose. 8 SuSy catalyzes the reversible cleavage of sucrose and UDP (Uracil diphosphate) to UDP-glucose and fructose Schafer et al., 2004; Winter and Huber, 2000).

SAI
SAI (Soluble Acid Invertase) activity occurs mostly in the vacuoles of storage parenchyma cells, and a few in the apoplastic cell wall space either as a soluble enzyme or bound to the cell wall fraction (Hawker et al., 1991). SAI activity is regarded to have an inverse relationship with sucrose accumulation in sugarcane, that is, SUC accumulation in the whole stalk and within individual sugarcane internodes was correlated with the down-regulation of soluble acid invertase (Zhu et al., 1997).

PPDK
PPDK (Pyruvate orthophosphate dikinase) is an important rate-limiting enzyme in plant photosynthesis more pronounced in C4 plants such as sugarcane than in C3 plants. The C4pathway consists of three key steps: the initial fixation of CO2 in the mesophyll cell cytosol by phosphoenol pyruvate (PEP) carboxylase (PEPC) to form a C4 acid, decarboxylation of a C4 acid in the bundle sheath cells to release CO2, and regeneration of the primary CO2 acceptor PEP in the mesophyll cell chloroplasts by pyruvate orthophosphate dikinas (Hatch, 1987). Whereas PPDK and its regulatory proteins are found in the chloroplast of C4 plants, PPDK is only present, and at low concentrations, in the cytoplasm of C3 plants. Despite C3 PPDK being highly homologous to its C4 counterpart, C3 PPDK is not believed to function in photosynthesis (Minorsky, 2002).

CT Gene Family
Among the cold tolerance genes used in this study were C-repeats/Dehydration Responsive Element (CRT/DRE), COR15a, Mischantus-PPDK and Calcium-dependent protein kinases (CDPK). Sugarcane is essentially a tropical crop.

CRT/DRE
CRT (C-repeats), DRE (Dehydration Responsive Element) are cis-element found in the promoter regions of many cold and dehydration genes. A family of transcription factors known as CBFs or DREB1 binds to this element and activates transcription of the downstream cold and dehydration responsive genes (Liu et al., 1998; Stockinger et al., 1997). Interestingly, the CBF/DREB1 genes are themselves induced by low temperatures. This induction is transient and precedes that of the downstream genes with the CRT/DRE cis-element (Thomashow, 1999).

COR15a
Cold acclimation in plants is associated with the expression of COR (cold-regulated) genes. Artus et al. (1996), working with COR15a, provided the first direct evidence for a cold induced gene having a role in freezing tolerance. COR15a encodes a 15-kDa polypeptide that is targeted to the chloroplasts. Upon import into the organelle, COR15a is processed to a 9.4-kDa polypeptide designated COR15 am. Artus et al., (1996) demonstrated that constitutive expression of COR15a in non acclimated transgenic Arabidopsis thaliana plants increases the freezing tolerance of
both chloroplasts frozen in-situ and isolated leaf protoplasts frozen in-vitro by 1 to 2°C over the temperature range of -4 to -8 °C.

Miscanthus-specific PPDK

Owning the well-organized C₄ photosynthetic pathway yet tolerant of cool temperature climates, Miscanthus (*Miscanthus x giganteus*) is potentially an ideal energy crop and has found use as a bioenergy product in most of Europe (Bioenergy Information Network, 1999). The rhizomatous perennial grass *Miscanthus x giganteus* is from the same taxonomic group as sugarcane, sorghum (*Sorghum bicolor*), and maize (*Zea mays*) and uses the same C₄ photosynthetic pathway (Naidu and Long, 2004). It was hypothesized that the low-temperature tolerance in *Miscanthus x giganteus*, in addition to high effectiveness in photosynthetic rate, resemble to its maintenance of high levels of total soluble protein, particularly PPDK and Rubisco (Naidu et al., 2003). The gene sequence used here is a *Miscanthus x giganteus*-specific PPDK reported by Naidu et al., (2003).

CDPK

CDPK (calcium-dependent protein kinases) sequence used here are from a report using *Saccharum officinarum* EST database (Casu et al., 2004). CDPK, a large superfamily of kinases are thought to function in signal transduction pathways that utilize changes in cellular Ca++concentration to couple cellular responses to extracellular stimuli (Harmon et al., 2001). CDPK phosphorylate and regulate the activity of PEP carboxylase, an enzyme important in C₄ metabolism and is also involved in photosynthesis as well as stress like cold tolerance (Winter and Huber, 2000).

TRICH Gene Family

Phenotypic variability for pubescence (trichomes) among sugarcane clones range from no pubescence to very pubescent. Sugarcane breeders do not pay much attention to phenotypic variability for hairiness during selection, although pubescence has been implicated in insect resistance in other crops such as cotton and tomato (Kennedy, 2003; Lahtinen et al., 2004; Wright et al., 1999).

GL1

The glabrous1 mutant (gl1), which lacks trichomes on most surfaces, was used in early gene mapping studies (Marks, 1997). The GL1 gene encodes a protein with two myb transcription factor repeats and a carboxy-terminal domain of approximately 120 amino acids. 13 Myb are a large family of transcription factors encoding proteins that are crucial to the control of proliferation and differentiation in a number of cell types.

GL2

In-situ hybridization analysis indicates that GL2 mRNA is expressed strongly in developing trichomes. Immunolocalization of the GL2 protein and the analysis of plants containing a GL2 promoter GUS reporter gene construct (GL2GUS) indicate a more complex pattern of expression. By genetic analysis, GL2 function downstream of GL1, but GL1 does not control the non trichome expression pattern of GL2. Although the GL1 protein does not regulate the early expression pattern of GL2, it or another myb protein could influence the expression of GL2 in developing trichomes by binding to the myb binding site (Marks, 1997).

TTG1

It has been found that plants doubly heterozygous for both weak Transparent testaglabra1 (ttg1), along with gl1 mutant allele, have greater than normal numbers of clustered trichomes; that is, lateral inhibition appears to be reduced (Marks, 1997). Larkin et al. (1994) found that plants heterozygous for TTG (TTG/ttg) and one or two copies of the 35SGL1 construct have a greater number of leaf trichomes than plants that have one or two copies of 35 SGL1 in a homozygous TTG background.

CONCLUSION

The present study on the evaluation of functional genes in sugarcane had given enormous information of type of gene function that governs the productivity, quality and yield of sugarcane varieties. Further, showed that the gene function will alter in varied environmental conditions.
Acknowledgements
The authors are grateful to the Dr Prabhakar Kore Basic Science Research Centre, KLE University, Belagavi, Department of Biotechnology and Microbiology, Karnataka University, Dharwad and Biogenics, Research Centre in Biotechnology, Hubli, Karnataka, India, for giving all the necessary facilities to study and formulate this research.

REFERENCES