Advances in Applied Science Research Open Access

  • ISSN: 0976-8610
  • Journal h-index: 57
  • Journal CiteScore: 93.86
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Reach us +32 25889658

Abstract

Subsurface topography of Supra crustals of Dharwar Craton through inversion of Regional Bouguer Gravity

Bhagya K. and Ramadass G

Regional gravity data have been analyzed to estimate the supra crustal thickness in parts of Dharwar Craton (73°30' E to 78° 30' E and latitude 12° N to 17°N). The depositions of supra crustal four deep seated faults and several other lineaments were delineated from qualitative analysis of Bouguer gravity. The supracrustal (Charnokite, Younger granites, Closepet granite, Sargur belt, Chitradurga schist belt, Bababudan group , Deccan Basalt, Bhima sediments, and western part of Cuddapah Sediments) as well as deep crustal (Peninsular gneiss, Upper crustal and deeper crust layer ( up to Moho) structural configuration in the Dharwar craton were obtained via the inversion of modeling of eleven east-west traverses ( T1 to T 11) digitized from the Bouguer gravity contour map. The sub-surface configuration of each of these supra crustal layers were obtained by digitizing the corresponding crustal structure and presented as 3D contour map reveal structural complexity with plunging synclines, anticlines and refolded along E-W trending warps. The peninsular gneissic layer is very uneven in geometry varying in thickness from 6.9 to 11 km, upper crustal layer varies between 18.2 to 24.55 km and deep crustal layer 34 km to 40 km .